Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\frac{\sqrt{3}-1}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}-\frac{\sqrt{3}}{2}+\sqrt{32}\sqrt{\frac{1}{8}}
Rationalize the denominator of \frac{1}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
\frac{\sqrt{3}-1}{\left(\sqrt{3}\right)^{2}-1^{2}}-\frac{\sqrt{3}}{2}+\sqrt{32}\sqrt{\frac{1}{8}}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}-1}{3-1}-\frac{\sqrt{3}}{2}+\sqrt{32}\sqrt{\frac{1}{8}}
Square \sqrt{3}. Square 1.
\frac{\sqrt{3}-1}{2}-\frac{\sqrt{3}}{2}+\sqrt{32}\sqrt{\frac{1}{8}}
Subtract 1 from 3 to get 2.
\frac{\sqrt{3}-1}{2}-\frac{\sqrt{3}}{2}+4\sqrt{2}\sqrt{\frac{1}{8}}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
\frac{\sqrt{3}-1}{2}-\frac{\sqrt{3}}{2}+4\sqrt{2}\times \frac{\sqrt{1}}{\sqrt{8}}
Rewrite the square root of the division \sqrt{\frac{1}{8}} as the division of square roots \frac{\sqrt{1}}{\sqrt{8}}.
\frac{\sqrt{3}-1}{2}-\frac{\sqrt{3}}{2}+4\sqrt{2}\times \frac{1}{\sqrt{8}}
Calculate the square root of 1 and get 1.
\frac{\sqrt{3}-1}{2}-\frac{\sqrt{3}}{2}+4\sqrt{2}\times \frac{1}{2\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\sqrt{3}-1}{2}-\frac{\sqrt{3}}{2}+4\sqrt{2}\times \frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{1}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{3}-1}{2}-\frac{\sqrt{3}}{2}+4\sqrt{2}\times \frac{\sqrt{2}}{2\times 2}
The square of \sqrt{2} is 2.
\frac{\sqrt{3}-1}{2}-\frac{\sqrt{3}}{2}+4\sqrt{2}\times \frac{\sqrt{2}}{4}
Multiply 2 and 2 to get 4.
\frac{\sqrt{3}-1}{2}-\frac{\sqrt{3}}{2}+\sqrt{2}\sqrt{2}
Cancel out 4 and 4.
\frac{\sqrt{3}-1}{2}-\frac{\sqrt{3}}{2}+2
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{\sqrt{3}-1-\sqrt{3}}{2}+2
Since \frac{\sqrt{3}-1}{2} and \frac{\sqrt{3}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-1}{2}+2
Do the calculations in \sqrt{3}-1-\sqrt{3}.
\frac{-1}{2}+\frac{2\times 2}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{2}{2}.
\frac{-1+2\times 2}{2}
Since \frac{-1}{2} and \frac{2\times 2}{2} have the same denominator, add them by adding their numerators.
\frac{-1+4}{2}
Do the multiplications in -1+2\times 2.
\frac{3}{2}
Do the calculations in -1+4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}