Evaluate
\frac{\sqrt{3}-3\sqrt{2}}{5}\approx -0.502117976
Factor
\frac{\sqrt{3} - 3 \sqrt{2}}{5} = -0.5021179759100817
Share
Copied to clipboard
\frac{1}{3\sqrt{3}+\sqrt{12}+5\sqrt{2}}-\frac{4}{5\sqrt{2}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{1}{3\sqrt{3}+2\sqrt{3}+5\sqrt{2}}-\frac{4}{5\sqrt{2}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{1}{5\sqrt{3}+5\sqrt{2}}-\frac{4}{5\sqrt{2}}
Combine 3\sqrt{3} and 2\sqrt{3} to get 5\sqrt{3}.
\frac{5\sqrt{3}-5\sqrt{2}}{\left(5\sqrt{3}+5\sqrt{2}\right)\left(5\sqrt{3}-5\sqrt{2}\right)}-\frac{4}{5\sqrt{2}}
Rationalize the denominator of \frac{1}{5\sqrt{3}+5\sqrt{2}} by multiplying numerator and denominator by 5\sqrt{3}-5\sqrt{2}.
\frac{5\sqrt{3}-5\sqrt{2}}{\left(5\sqrt{3}\right)^{2}-\left(5\sqrt{2}\right)^{2}}-\frac{4}{5\sqrt{2}}
Consider \left(5\sqrt{3}+5\sqrt{2}\right)\left(5\sqrt{3}-5\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\sqrt{3}-5\sqrt{2}}{5^{2}\left(\sqrt{3}\right)^{2}-\left(5\sqrt{2}\right)^{2}}-\frac{4}{5\sqrt{2}}
Expand \left(5\sqrt{3}\right)^{2}.
\frac{5\sqrt{3}-5\sqrt{2}}{25\left(\sqrt{3}\right)^{2}-\left(5\sqrt{2}\right)^{2}}-\frac{4}{5\sqrt{2}}
Calculate 5 to the power of 2 and get 25.
\frac{5\sqrt{3}-5\sqrt{2}}{25\times 3-\left(5\sqrt{2}\right)^{2}}-\frac{4}{5\sqrt{2}}
The square of \sqrt{3} is 3.
\frac{5\sqrt{3}-5\sqrt{2}}{75-\left(5\sqrt{2}\right)^{2}}-\frac{4}{5\sqrt{2}}
Multiply 25 and 3 to get 75.
\frac{5\sqrt{3}-5\sqrt{2}}{75-5^{2}\left(\sqrt{2}\right)^{2}}-\frac{4}{5\sqrt{2}}
Expand \left(5\sqrt{2}\right)^{2}.
\frac{5\sqrt{3}-5\sqrt{2}}{75-25\left(\sqrt{2}\right)^{2}}-\frac{4}{5\sqrt{2}}
Calculate 5 to the power of 2 and get 25.
\frac{5\sqrt{3}-5\sqrt{2}}{75-25\times 2}-\frac{4}{5\sqrt{2}}
The square of \sqrt{2} is 2.
\frac{5\sqrt{3}-5\sqrt{2}}{75-50}-\frac{4}{5\sqrt{2}}
Multiply 25 and 2 to get 50.
\frac{5\sqrt{3}-5\sqrt{2}}{25}-\frac{4}{5\sqrt{2}}
Subtract 50 from 75 to get 25.
\frac{5\sqrt{3}-5\sqrt{2}}{25}-\frac{4\sqrt{2}}{5\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{4}{5\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{5\sqrt{3}-5\sqrt{2}}{25}-\frac{4\sqrt{2}}{5\times 2}
The square of \sqrt{2} is 2.
\frac{5\sqrt{3}-5\sqrt{2}}{25}-\frac{2\sqrt{2}}{5}
Cancel out 2 in both numerator and denominator.
\frac{5\sqrt{3}-5\sqrt{2}}{25}-\frac{5\times 2\sqrt{2}}{25}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 25 and 5 is 25. Multiply \frac{2\sqrt{2}}{5} times \frac{5}{5}.
\frac{5\sqrt{3}-5\sqrt{2}-5\times 2\sqrt{2}}{25}
Since \frac{5\sqrt{3}-5\sqrt{2}}{25} and \frac{5\times 2\sqrt{2}}{25} have the same denominator, subtract them by subtracting their numerators.
\frac{5\sqrt{3}-5\sqrt{2}-10\sqrt{2}}{25}
Do the multiplications in 5\sqrt{3}-5\sqrt{2}-5\times 2\sqrt{2}.
\frac{5\sqrt{3}-15\sqrt{2}}{25}
Do the calculations in 5\sqrt{3}-5\sqrt{2}-10\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}