Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2\sqrt{502}-\sqrt{2007}}
Factor 2008=2^{2}\times 502. Rewrite the square root of the product \sqrt{2^{2}\times 502} as the product of square roots \sqrt{2^{2}}\sqrt{502}. Take the square root of 2^{2}.
\frac{1}{2\sqrt{502}-3\sqrt{223}}
Factor 2007=3^{2}\times 223. Rewrite the square root of the product \sqrt{3^{2}\times 223} as the product of square roots \sqrt{3^{2}}\sqrt{223}. Take the square root of 3^{2}.
\frac{2\sqrt{502}+3\sqrt{223}}{\left(2\sqrt{502}-3\sqrt{223}\right)\left(2\sqrt{502}+3\sqrt{223}\right)}
Rationalize the denominator of \frac{1}{2\sqrt{502}-3\sqrt{223}} by multiplying numerator and denominator by 2\sqrt{502}+3\sqrt{223}.
\frac{2\sqrt{502}+3\sqrt{223}}{\left(2\sqrt{502}\right)^{2}-\left(-3\sqrt{223}\right)^{2}}
Consider \left(2\sqrt{502}-3\sqrt{223}\right)\left(2\sqrt{502}+3\sqrt{223}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{502}+3\sqrt{223}}{2^{2}\left(\sqrt{502}\right)^{2}-\left(-3\sqrt{223}\right)^{2}}
Expand \left(2\sqrt{502}\right)^{2}.
\frac{2\sqrt{502}+3\sqrt{223}}{4\left(\sqrt{502}\right)^{2}-\left(-3\sqrt{223}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{2\sqrt{502}+3\sqrt{223}}{4\times 502-\left(-3\sqrt{223}\right)^{2}}
The square of \sqrt{502} is 502.
\frac{2\sqrt{502}+3\sqrt{223}}{2008-\left(-3\sqrt{223}\right)^{2}}
Multiply 4 and 502 to get 2008.
\frac{2\sqrt{502}+3\sqrt{223}}{2008-\left(-3\right)^{2}\left(\sqrt{223}\right)^{2}}
Expand \left(-3\sqrt{223}\right)^{2}.
\frac{2\sqrt{502}+3\sqrt{223}}{2008-9\left(\sqrt{223}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{2\sqrt{502}+3\sqrt{223}}{2008-9\times 223}
The square of \sqrt{223} is 223.
\frac{2\sqrt{502}+3\sqrt{223}}{2008-2007}
Multiply 9 and 223 to get 2007.
\frac{2\sqrt{502}+3\sqrt{223}}{1}
Subtract 2007 from 2008 to get 1.
2\sqrt{502}+3\sqrt{223}
Anything divided by one gives itself.