Evaluate
0
Factor
0
Share
Copied to clipboard
\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{1}{1+\sqrt{2}}-\frac{1}{2+\sqrt{2}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{2}}{2}-\frac{1}{1+\sqrt{2}}-\frac{1}{2+\sqrt{2}}
The square of \sqrt{2} is 2.
\frac{\sqrt{2}}{2}-\frac{1-\sqrt{2}}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}-\frac{1}{2+\sqrt{2}}
Rationalize the denominator of \frac{1}{1+\sqrt{2}} by multiplying numerator and denominator by 1-\sqrt{2}.
\frac{\sqrt{2}}{2}-\frac{1-\sqrt{2}}{1^{2}-\left(\sqrt{2}\right)^{2}}-\frac{1}{2+\sqrt{2}}
Consider \left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}}{2}-\frac{1-\sqrt{2}}{1-2}-\frac{1}{2+\sqrt{2}}
Square 1. Square \sqrt{2}.
\frac{\sqrt{2}}{2}-\frac{1-\sqrt{2}}{-1}-\frac{1}{2+\sqrt{2}}
Subtract 2 from 1 to get -1.
\frac{\sqrt{2}}{2}-\left(-1-\left(-\sqrt{2}\right)\right)-\frac{1}{2+\sqrt{2}}
Anything divided by -1 gives its opposite. To find the opposite of 1-\sqrt{2}, find the opposite of each term.
\frac{\sqrt{2}}{2}-\left(-1\right)-\left(-\left(-\sqrt{2}\right)\right)-\frac{1}{2+\sqrt{2}}
To find the opposite of -1-\left(-\sqrt{2}\right), find the opposite of each term.
\frac{\sqrt{2}}{2}+1-\left(-\left(-\sqrt{2}\right)\right)-\frac{1}{2+\sqrt{2}}
The opposite of -1 is 1.
\frac{\sqrt{2}}{2}+1-\sqrt{2}-\frac{1}{2+\sqrt{2}}
The opposite of -\sqrt{2} is \sqrt{2}.
\frac{\sqrt{2}}{2}+1-\sqrt{2}-\frac{2-\sqrt{2}}{\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}
Rationalize the denominator of \frac{1}{2+\sqrt{2}} by multiplying numerator and denominator by 2-\sqrt{2}.
\frac{\sqrt{2}}{2}+1-\sqrt{2}-\frac{2-\sqrt{2}}{2^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}}{2}+1-\sqrt{2}-\frac{2-\sqrt{2}}{4-2}
Square 2. Square \sqrt{2}.
\frac{\sqrt{2}}{2}+1-\sqrt{2}-\frac{2-\sqrt{2}}{2}
Subtract 2 from 4 to get 2.
\frac{\sqrt{2}}{2}+\frac{2}{2}-\sqrt{2}-\frac{2-\sqrt{2}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{\sqrt{2}+2}{2}-\sqrt{2}-\frac{2-\sqrt{2}}{2}
Since \frac{\sqrt{2}}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
-\frac{1}{2}\sqrt{2}+1-\frac{2-\sqrt{2}}{2}
Combine \frac{\sqrt{2}}{2} and -\sqrt{2} to get -\frac{1}{2}\sqrt{2}.
-\frac{1}{2}\sqrt{2}+\frac{2}{2}-\frac{2-\sqrt{2}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
-\frac{1}{2}\sqrt{2}+\frac{2-\left(2-\sqrt{2}\right)}{2}
Since \frac{2}{2} and \frac{2-\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{2}\sqrt{2}+\frac{2-2+\sqrt{2}}{2}
Do the multiplications in 2-\left(2-\sqrt{2}\right).
-\frac{1}{2}\sqrt{2}+\frac{\sqrt{2}}{2}
Do the calculations in 2-2+\sqrt{2}.
0
Combine -\frac{1}{2}\sqrt{2} and \frac{\sqrt{2}}{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}