Evaluate
\frac{25\sqrt{2}}{46}-\frac{\sqrt{3}}{3}+\frac{5}{23}\approx 0.408635363
Share
Copied to clipboard
\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{2}-5}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{2}}{2}-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{2}-5}
The square of \sqrt{2} is 2.
\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\frac{1}{\sqrt{2}-5}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}-\frac{1}{\sqrt{2}-5}
The square of \sqrt{3} is 3.
\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}-\frac{\sqrt{2}+5}{\left(\sqrt{2}-5\right)\left(\sqrt{2}+5\right)}
Rationalize the denominator of \frac{1}{\sqrt{2}-5} by multiplying numerator and denominator by \sqrt{2}+5.
\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}-\frac{\sqrt{2}+5}{\left(\sqrt{2}\right)^{2}-5^{2}}
Consider \left(\sqrt{2}-5\right)\left(\sqrt{2}+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}-\frac{\sqrt{2}+5}{2-25}
Square \sqrt{2}. Square 5.
\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}-\frac{\sqrt{2}+5}{-23}
Subtract 25 from 2 to get -23.
\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}-\frac{-\sqrt{2}-5}{23}
Multiply both numerator and denominator by -1.
\frac{3\sqrt{2}}{6}-\frac{2\sqrt{3}}{6}-\frac{-\sqrt{2}-5}{23}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{\sqrt{2}}{2} times \frac{3}{3}. Multiply \frac{\sqrt{3}}{3} times \frac{2}{2}.
\frac{3\sqrt{2}-2\sqrt{3}}{6}-\frac{-\sqrt{2}-5}{23}
Since \frac{3\sqrt{2}}{6} and \frac{2\sqrt{3}}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{23\left(3\sqrt{2}-2\sqrt{3}\right)}{138}-\frac{6\left(-\sqrt{2}-5\right)}{138}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 23 is 138. Multiply \frac{3\sqrt{2}-2\sqrt{3}}{6} times \frac{23}{23}. Multiply \frac{-\sqrt{2}-5}{23} times \frac{6}{6}.
\frac{23\left(3\sqrt{2}-2\sqrt{3}\right)-6\left(-\sqrt{2}-5\right)}{138}
Since \frac{23\left(3\sqrt{2}-2\sqrt{3}\right)}{138} and \frac{6\left(-\sqrt{2}-5\right)}{138} have the same denominator, subtract them by subtracting their numerators.
\frac{69\sqrt{2}-46\sqrt{3}+6\sqrt{2}+30}{138}
Do the multiplications in 23\left(3\sqrt{2}-2\sqrt{3}\right)-6\left(-\sqrt{2}-5\right).
\frac{75\sqrt{2}-46\sqrt{3}+30}{138}
Do the calculations in 69\sqrt{2}-46\sqrt{3}+6\sqrt{2}+30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}