Evaluate
\frac{\sqrt{2}\left(2\sqrt{3}-23\right)}{2}\approx -13.813966225
Share
Copied to clipboard
\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+4\sqrt{\frac{3}{8}}-\sqrt{12}\sqrt{24}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{2}}{2}+4\sqrt{\frac{3}{8}}-\sqrt{12}\sqrt{24}
The square of \sqrt{2} is 2.
\frac{\sqrt{2}}{2}+4\times \frac{\sqrt{3}}{\sqrt{8}}-\sqrt{12}\sqrt{24}
Rewrite the square root of the division \sqrt{\frac{3}{8}} as the division of square roots \frac{\sqrt{3}}{\sqrt{8}}.
\frac{\sqrt{2}}{2}+4\times \frac{\sqrt{3}}{2\sqrt{2}}-\sqrt{12}\sqrt{24}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\sqrt{2}}{2}+4\times \frac{\sqrt{3}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}-\sqrt{12}\sqrt{24}
Rationalize the denominator of \frac{\sqrt{3}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{2}}{2}+4\times \frac{\sqrt{3}\sqrt{2}}{2\times 2}-\sqrt{12}\sqrt{24}
The square of \sqrt{2} is 2.
\frac{\sqrt{2}}{2}+4\times \frac{\sqrt{6}}{2\times 2}-\sqrt{12}\sqrt{24}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{2}}{2}+4\times \frac{\sqrt{6}}{4}-\sqrt{12}\sqrt{24}
Multiply 2 and 2 to get 4.
\frac{\sqrt{2}}{2}+\sqrt{6}-\sqrt{12}\sqrt{24}
Cancel out 4 and 4.
\frac{\sqrt{2}}{2}+\frac{2\sqrt{6}}{2}-\sqrt{12}\sqrt{24}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{6} times \frac{2}{2}.
\frac{\sqrt{2}+2\sqrt{6}}{2}-\sqrt{12}\sqrt{24}
Since \frac{\sqrt{2}}{2} and \frac{2\sqrt{6}}{2} have the same denominator, add them by adding their numerators.
\frac{\sqrt{2}+2\sqrt{6}}{2}-\sqrt{12}\sqrt{12}\sqrt{2}
Factor 24=12\times 2. Rewrite the square root of the product \sqrt{12\times 2} as the product of square roots \sqrt{12}\sqrt{2}.
\frac{\sqrt{2}+2\sqrt{6}}{2}-12\sqrt{2}
Multiply \sqrt{12} and \sqrt{12} to get 12.
\frac{\sqrt{2}+2\sqrt{6}}{2}+\frac{2\left(-12\right)\sqrt{2}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply -12\sqrt{2} times \frac{2}{2}.
\frac{\sqrt{2}+2\sqrt{6}+2\left(-12\right)\sqrt{2}}{2}
Since \frac{\sqrt{2}+2\sqrt{6}}{2} and \frac{2\left(-12\right)\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
\frac{\sqrt{2}+2\sqrt{6}-24\sqrt{2}}{2}
Do the multiplications in \sqrt{2}+2\sqrt{6}+2\left(-12\right)\sqrt{2}.
\frac{-23\sqrt{2}+2\sqrt{6}}{2}
Do the calculations in \sqrt{2}+2\sqrt{6}-24\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}