Evaluate
4\sqrt{2}\approx 5.656854249
Share
Copied to clipboard
\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\frac{7}{\sqrt{8}-1}+\sqrt[6]{8}
Rationalize the denominator of \frac{1}{\sqrt{2}+1} by multiplying numerator and denominator by \sqrt{2}-1.
\frac{\sqrt{2}-1}{\left(\sqrt{2}\right)^{2}-1^{2}}+\frac{7}{\sqrt{8}-1}+\sqrt[6]{8}
Consider \left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}-1}{2-1}+\frac{7}{\sqrt{8}-1}+\sqrt[6]{8}
Square \sqrt{2}. Square 1.
\frac{\sqrt{2}-1}{1}+\frac{7}{\sqrt{8}-1}+\sqrt[6]{8}
Subtract 1 from 2 to get 1.
\sqrt{2}-1+\frac{7}{\sqrt{8}-1}+\sqrt[6]{8}
Anything divided by one gives itself.
\sqrt{2}-1+\frac{7}{2\sqrt{2}-1}+\sqrt[6]{8}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\sqrt{2}-1+\frac{7\left(2\sqrt{2}+1\right)}{\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)}+\sqrt[6]{8}
Rationalize the denominator of \frac{7}{2\sqrt{2}-1} by multiplying numerator and denominator by 2\sqrt{2}+1.
\sqrt{2}-1+\frac{7\left(2\sqrt{2}+1\right)}{\left(2\sqrt{2}\right)^{2}-1^{2}}+\sqrt[6]{8}
Consider \left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{2}-1+\frac{7\left(2\sqrt{2}+1\right)}{2^{2}\left(\sqrt{2}\right)^{2}-1^{2}}+\sqrt[6]{8}
Expand \left(2\sqrt{2}\right)^{2}.
\sqrt{2}-1+\frac{7\left(2\sqrt{2}+1\right)}{4\left(\sqrt{2}\right)^{2}-1^{2}}+\sqrt[6]{8}
Calculate 2 to the power of 2 and get 4.
\sqrt{2}-1+\frac{7\left(2\sqrt{2}+1\right)}{4\times 2-1^{2}}+\sqrt[6]{8}
The square of \sqrt{2} is 2.
\sqrt{2}-1+\frac{7\left(2\sqrt{2}+1\right)}{8-1^{2}}+\sqrt[6]{8}
Multiply 4 and 2 to get 8.
\sqrt{2}-1+\frac{7\left(2\sqrt{2}+1\right)}{8-1}+\sqrt[6]{8}
Calculate 1 to the power of 2 and get 1.
\sqrt{2}-1+\frac{7\left(2\sqrt{2}+1\right)}{7}+\sqrt[6]{8}
Subtract 1 from 8 to get 7.
\sqrt{2}-1+2\sqrt{2}+1+\sqrt[6]{8}
Cancel out 7 and 7.
3\sqrt{2}-1+1+\sqrt[6]{8}
Combine \sqrt{2} and 2\sqrt{2} to get 3\sqrt{2}.
3\sqrt{2}+\sqrt[6]{8}
Add -1 and 1 to get 0.
\sqrt[6]{8}=\sqrt[6]{2^{3}}=2^{\frac{3}{6}}=2^{\frac{1}{2}}=\sqrt{2}
Rewrite \sqrt[6]{8} as \sqrt[6]{2^{3}}. Convert from radical to exponential form and cancel out 3 in the exponent. Convert back to radical form.
3\sqrt{2}+\sqrt{2}
Insert the obtained value back in the expression.
4\sqrt{2}
Combine 3\sqrt{2} and \sqrt{2} to get 4\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}