Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{2}-\sqrt{6}}{\left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right)}
Rationalize the denominator of \frac{1}{\sqrt{2}+\sqrt{6}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{6}.
\frac{\sqrt{2}-\sqrt{6}}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}-\sqrt{6}}{2-6}
Square \sqrt{2}. Square \sqrt{6}.
\frac{\sqrt{2}-\sqrt{6}}{-4}
Subtract 6 from 2 to get -4.
\frac{-\sqrt{2}+\sqrt{6}}{4}
Multiply both numerator and denominator by -1.