Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{10}+3}{\left(\sqrt{10}-3\right)\left(\sqrt{10}+3\right)}-\frac{1}{\sqrt{10}+3}
Rationalize the denominator of \frac{1}{\sqrt{10}-3} by multiplying numerator and denominator by \sqrt{10}+3.
\frac{\sqrt{10}+3}{\left(\sqrt{10}\right)^{2}-3^{2}}-\frac{1}{\sqrt{10}+3}
Consider \left(\sqrt{10}-3\right)\left(\sqrt{10}+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{10}+3}{10-9}-\frac{1}{\sqrt{10}+3}
Square \sqrt{10}. Square 3.
\frac{\sqrt{10}+3}{1}-\frac{1}{\sqrt{10}+3}
Subtract 9 from 10 to get 1.
\sqrt{10}+3-\frac{1}{\sqrt{10}+3}
Anything divided by one gives itself.
\sqrt{10}+3-\frac{\sqrt{10}-3}{\left(\sqrt{10}+3\right)\left(\sqrt{10}-3\right)}
Rationalize the denominator of \frac{1}{\sqrt{10}+3} by multiplying numerator and denominator by \sqrt{10}-3.
\sqrt{10}+3-\frac{\sqrt{10}-3}{\left(\sqrt{10}\right)^{2}-3^{2}}
Consider \left(\sqrt{10}+3\right)\left(\sqrt{10}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{10}+3-\frac{\sqrt{10}-3}{10-9}
Square \sqrt{10}. Square 3.
\sqrt{10}+3-\frac{\sqrt{10}-3}{1}
Subtract 9 from 10 to get 1.
\sqrt{10}+3-\left(\sqrt{10}-3\right)
Anything divided by one gives itself.
\sqrt{10}+3-\sqrt{10}-\left(-3\right)
To find the opposite of \sqrt{10}-3, find the opposite of each term.
\sqrt{10}+3-\sqrt{10}+3
The opposite of -3 is 3.
3+3
Combine \sqrt{10} and -\sqrt{10} to get 0.
6
Add 3 and 3 to get 6.