Skip to main content
Solve for λ (complex solution)
Tick mark Image
Solve for λ
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-1-\left(x-1\right)\left(\lambda -1\right)\times 2=\left(\lambda -1\right)\times 5
Variable \lambda cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(\lambda -1\right)\left(x+1\right), the least common multiple of \lambda -1,x+1,x^{2}-1.
x^{2}-1-\left(x\lambda -x-\lambda +1\right)\times 2=\left(\lambda -1\right)\times 5
Use the distributive property to multiply x-1 by \lambda -1.
x^{2}-1-\left(2x\lambda -2x-2\lambda +2\right)=\left(\lambda -1\right)\times 5
Use the distributive property to multiply x\lambda -x-\lambda +1 by 2.
x^{2}-1-2x\lambda +2x+2\lambda -2=\left(\lambda -1\right)\times 5
To find the opposite of 2x\lambda -2x-2\lambda +2, find the opposite of each term.
x^{2}-3-2x\lambda +2x+2\lambda =\left(\lambda -1\right)\times 5
Subtract 2 from -1 to get -3.
x^{2}-3-2x\lambda +2x+2\lambda =5\lambda -5
Use the distributive property to multiply \lambda -1 by 5.
x^{2}-3-2x\lambda +2x+2\lambda -5\lambda =-5
Subtract 5\lambda from both sides.
x^{2}-3-2x\lambda +2x-3\lambda =-5
Combine 2\lambda and -5\lambda to get -3\lambda .
-3-2x\lambda +2x-3\lambda =-5-x^{2}
Subtract x^{2} from both sides.
-2x\lambda +2x-3\lambda =-5-x^{2}+3
Add 3 to both sides.
-2x\lambda +2x-3\lambda =-2-x^{2}
Add -5 and 3 to get -2.
-2x\lambda -3\lambda =-2-x^{2}-2x
Subtract 2x from both sides.
\left(-2x-3\right)\lambda =-2-x^{2}-2x
Combine all terms containing \lambda .
\left(-2x-3\right)\lambda =-x^{2}-2x-2
The equation is in standard form.
\frac{\left(-2x-3\right)\lambda }{-2x-3}=\frac{-x^{2}-2x-2}{-2x-3}
Divide both sides by -3-2x.
\lambda =\frac{-x^{2}-2x-2}{-2x-3}
Dividing by -3-2x undoes the multiplication by -3-2x.
\lambda =\frac{x^{2}+2x+2}{2x+3}
Divide -x^{2}-2x-2 by -3-2x.
\lambda =\frac{x^{2}+2x+2}{2x+3}\text{, }\lambda \neq 1
Variable \lambda cannot be equal to 1.
x^{2}-1-\left(x-1\right)\left(\lambda -1\right)\times 2=\left(\lambda -1\right)\times 5
Variable \lambda cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(\lambda -1\right)\left(x+1\right), the least common multiple of \lambda -1,x+1,x^{2}-1.
x^{2}-1-\left(x\lambda -x-\lambda +1\right)\times 2=\left(\lambda -1\right)\times 5
Use the distributive property to multiply x-1 by \lambda -1.
x^{2}-1-\left(2x\lambda -2x-2\lambda +2\right)=\left(\lambda -1\right)\times 5
Use the distributive property to multiply x\lambda -x-\lambda +1 by 2.
x^{2}-1-2x\lambda +2x+2\lambda -2=\left(\lambda -1\right)\times 5
To find the opposite of 2x\lambda -2x-2\lambda +2, find the opposite of each term.
x^{2}-3-2x\lambda +2x+2\lambda =\left(\lambda -1\right)\times 5
Subtract 2 from -1 to get -3.
x^{2}-3-2x\lambda +2x+2\lambda =5\lambda -5
Use the distributive property to multiply \lambda -1 by 5.
x^{2}-3-2x\lambda +2x+2\lambda -5\lambda =-5
Subtract 5\lambda from both sides.
x^{2}-3-2x\lambda +2x-3\lambda =-5
Combine 2\lambda and -5\lambda to get -3\lambda .
-3-2x\lambda +2x-3\lambda =-5-x^{2}
Subtract x^{2} from both sides.
-2x\lambda +2x-3\lambda =-5-x^{2}+3
Add 3 to both sides.
-2x\lambda +2x-3\lambda =-2-x^{2}
Add -5 and 3 to get -2.
-2x\lambda -3\lambda =-2-x^{2}-2x
Subtract 2x from both sides.
\left(-2x-3\right)\lambda =-2-x^{2}-2x
Combine all terms containing \lambda .
\left(-2x-3\right)\lambda =-x^{2}-2x-2
The equation is in standard form.
\frac{\left(-2x-3\right)\lambda }{-2x-3}=\frac{-x^{2}-2x-2}{-2x-3}
Divide both sides by -3-2x.
\lambda =\frac{-x^{2}-2x-2}{-2x-3}
Dividing by -3-2x undoes the multiplication by -3-2x.
\lambda =\frac{x^{2}+2x+2}{2x+3}
Divide -x^{2}-2x-2 by -3-2x.
\lambda =\frac{x^{2}+2x+2}{2x+3}\text{, }\lambda \neq 1
Variable \lambda cannot be equal to 1.