Solve for λ (complex solution)
\lambda =\frac{x^{2}+2x+2}{2x+3}
x\neq -1\text{ and }x\neq 1\text{ and }x\neq -\frac{3}{2}
Solve for λ
\lambda =\frac{x^{2}+2x+2}{2x+3}
x\neq -\frac{3}{2}\text{ and }|x|\neq 1
Solve for x (complex solution)
x=\sqrt{\lambda ^{2}+\lambda -1}+\lambda -1
x=-\sqrt{\lambda ^{2}+\lambda -1}+\lambda -1\text{, }\lambda \neq 1
Solve for x
x=\sqrt{\lambda ^{2}+\lambda -1}+\lambda -1
x=-\sqrt{\lambda ^{2}+\lambda -1}+\lambda -1\text{, }\lambda \leq \frac{-\sqrt{5}-1}{2}\text{ or }\left(\lambda \neq 1\text{ and }\lambda \geq \frac{\sqrt{5}-1}{2}\right)
Graph
Share
Copied to clipboard
x^{2}-1-\left(x-1\right)\left(\lambda -1\right)\times 2=\left(\lambda -1\right)\times 5
Variable \lambda cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(\lambda -1\right)\left(x+1\right), the least common multiple of \lambda -1,x+1,x^{2}-1.
x^{2}-1-\left(x\lambda -x-\lambda +1\right)\times 2=\left(\lambda -1\right)\times 5
Use the distributive property to multiply x-1 by \lambda -1.
x^{2}-1-\left(2x\lambda -2x-2\lambda +2\right)=\left(\lambda -1\right)\times 5
Use the distributive property to multiply x\lambda -x-\lambda +1 by 2.
x^{2}-1-2x\lambda +2x+2\lambda -2=\left(\lambda -1\right)\times 5
To find the opposite of 2x\lambda -2x-2\lambda +2, find the opposite of each term.
x^{2}-3-2x\lambda +2x+2\lambda =\left(\lambda -1\right)\times 5
Subtract 2 from -1 to get -3.
x^{2}-3-2x\lambda +2x+2\lambda =5\lambda -5
Use the distributive property to multiply \lambda -1 by 5.
x^{2}-3-2x\lambda +2x+2\lambda -5\lambda =-5
Subtract 5\lambda from both sides.
x^{2}-3-2x\lambda +2x-3\lambda =-5
Combine 2\lambda and -5\lambda to get -3\lambda .
-3-2x\lambda +2x-3\lambda =-5-x^{2}
Subtract x^{2} from both sides.
-2x\lambda +2x-3\lambda =-5-x^{2}+3
Add 3 to both sides.
-2x\lambda +2x-3\lambda =-2-x^{2}
Add -5 and 3 to get -2.
-2x\lambda -3\lambda =-2-x^{2}-2x
Subtract 2x from both sides.
\left(-2x-3\right)\lambda =-2-x^{2}-2x
Combine all terms containing \lambda .
\left(-2x-3\right)\lambda =-x^{2}-2x-2
The equation is in standard form.
\frac{\left(-2x-3\right)\lambda }{-2x-3}=\frac{-x^{2}-2x-2}{-2x-3}
Divide both sides by -3-2x.
\lambda =\frac{-x^{2}-2x-2}{-2x-3}
Dividing by -3-2x undoes the multiplication by -3-2x.
\lambda =\frac{x^{2}+2x+2}{2x+3}
Divide -x^{2}-2x-2 by -3-2x.
\lambda =\frac{x^{2}+2x+2}{2x+3}\text{, }\lambda \neq 1
Variable \lambda cannot be equal to 1.
x^{2}-1-\left(x-1\right)\left(\lambda -1\right)\times 2=\left(\lambda -1\right)\times 5
Variable \lambda cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(\lambda -1\right)\left(x+1\right), the least common multiple of \lambda -1,x+1,x^{2}-1.
x^{2}-1-\left(x\lambda -x-\lambda +1\right)\times 2=\left(\lambda -1\right)\times 5
Use the distributive property to multiply x-1 by \lambda -1.
x^{2}-1-\left(2x\lambda -2x-2\lambda +2\right)=\left(\lambda -1\right)\times 5
Use the distributive property to multiply x\lambda -x-\lambda +1 by 2.
x^{2}-1-2x\lambda +2x+2\lambda -2=\left(\lambda -1\right)\times 5
To find the opposite of 2x\lambda -2x-2\lambda +2, find the opposite of each term.
x^{2}-3-2x\lambda +2x+2\lambda =\left(\lambda -1\right)\times 5
Subtract 2 from -1 to get -3.
x^{2}-3-2x\lambda +2x+2\lambda =5\lambda -5
Use the distributive property to multiply \lambda -1 by 5.
x^{2}-3-2x\lambda +2x+2\lambda -5\lambda =-5
Subtract 5\lambda from both sides.
x^{2}-3-2x\lambda +2x-3\lambda =-5
Combine 2\lambda and -5\lambda to get -3\lambda .
-3-2x\lambda +2x-3\lambda =-5-x^{2}
Subtract x^{2} from both sides.
-2x\lambda +2x-3\lambda =-5-x^{2}+3
Add 3 to both sides.
-2x\lambda +2x-3\lambda =-2-x^{2}
Add -5 and 3 to get -2.
-2x\lambda -3\lambda =-2-x^{2}-2x
Subtract 2x from both sides.
\left(-2x-3\right)\lambda =-2-x^{2}-2x
Combine all terms containing \lambda .
\left(-2x-3\right)\lambda =-x^{2}-2x-2
The equation is in standard form.
\frac{\left(-2x-3\right)\lambda }{-2x-3}=\frac{-x^{2}-2x-2}{-2x-3}
Divide both sides by -3-2x.
\lambda =\frac{-x^{2}-2x-2}{-2x-3}
Dividing by -3-2x undoes the multiplication by -3-2x.
\lambda =\frac{x^{2}+2x+2}{2x+3}
Divide -x^{2}-2x-2 by -3-2x.
\lambda =\frac{x^{2}+2x+2}{2x+3}\text{, }\lambda \neq 1
Variable \lambda cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}