Solve for p
p=-\frac{r\gamma }{\gamma -r}
r\neq 0\text{ and }\gamma \neq 0\text{ and }\gamma \neq r
Solve for r
r=-\frac{p\gamma }{\gamma -p}
p\neq 0\text{ and }\gamma \neq 0\text{ and }\gamma \neq p
Quiz
Linear Equation
5 problems similar to:
\frac { 1 } { \gamma } = \frac { 1 } { p } + \frac { 1 } { r }
Share
Copied to clipboard
pr=r\gamma +p\gamma
Variable p cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by pr\gamma , the least common multiple of \gamma ,p,r.
pr-p\gamma =r\gamma
Subtract p\gamma from both sides.
\left(r-\gamma \right)p=r\gamma
Combine all terms containing p.
\frac{\left(r-\gamma \right)p}{r-\gamma }=\frac{r\gamma }{r-\gamma }
Divide both sides by r-\gamma .
p=\frac{r\gamma }{r-\gamma }
Dividing by r-\gamma undoes the multiplication by r-\gamma .
p=\frac{r\gamma }{r-\gamma }\text{, }p\neq 0
Variable p cannot be equal to 0.
pr=r\gamma +p\gamma
Variable r cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by pr\gamma , the least common multiple of \gamma ,p,r.
pr-r\gamma =p\gamma
Subtract r\gamma from both sides.
\left(p-\gamma \right)r=p\gamma
Combine all terms containing r.
\frac{\left(p-\gamma \right)r}{p-\gamma }=\frac{p\gamma }{p-\gamma }
Divide both sides by p-\gamma .
r=\frac{p\gamma }{p-\gamma }
Dividing by p-\gamma undoes the multiplication by p-\gamma .
r=\frac{p\gamma }{p-\gamma }\text{, }r\neq 0
Variable r cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}