Solve for x
x = \frac{31}{8} = 3\frac{7}{8} = 3.875
Graph
Share
Copied to clipboard
x\times \frac{1}{\frac{31}{32}}=4
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x\times 1\times \frac{32}{31}=4
Divide 1 by \frac{31}{32} by multiplying 1 by the reciprocal of \frac{31}{32}.
x\times \frac{32}{31}=4
Multiply 1 and \frac{32}{31} to get \frac{32}{31}.
x=4\times \frac{31}{32}
Multiply both sides by \frac{31}{32}, the reciprocal of \frac{32}{31}.
x=\frac{4\times 31}{32}
Express 4\times \frac{31}{32} as a single fraction.
x=\frac{124}{32}
Multiply 4 and 31 to get 124.
x=\frac{31}{8}
Reduce the fraction \frac{124}{32} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}