Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{5}{x+1}-\frac{x+4}{x^{2}-3x-4}}{3x^{2}-3}
Divide 1 by \frac{3x^{2}-3}{\frac{5}{x+1}-\frac{x+4}{x^{2}-3x-4}} by multiplying 1 by the reciprocal of \frac{3x^{2}-3}{\frac{5}{x+1}-\frac{x+4}{x^{2}-3x-4}}.
\frac{\frac{5}{x+1}-\frac{x+4}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3}
Factor x^{2}-3x-4.
\frac{\frac{5\left(x-4\right)}{\left(x-4\right)\left(x+1\right)}-\frac{x+4}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and \left(x-4\right)\left(x+1\right) is \left(x-4\right)\left(x+1\right). Multiply \frac{5}{x+1} times \frac{x-4}{x-4}.
\frac{\frac{5\left(x-4\right)-\left(x+4\right)}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3}
Since \frac{5\left(x-4\right)}{\left(x-4\right)\left(x+1\right)} and \frac{x+4}{\left(x-4\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5x-20-x-4}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3}
Do the multiplications in 5\left(x-4\right)-\left(x+4\right).
\frac{\frac{4x-24}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3}
Combine like terms in 5x-20-x-4.
\frac{4x-24}{\left(x-4\right)\left(x+1\right)\left(3x^{2}-3\right)}
Express \frac{\frac{4x-24}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3} as a single fraction.
\frac{4x-24}{\left(x^{2}-3x-4\right)\left(3x^{2}-3\right)}
Use the distributive property to multiply x-4 by x+1 and combine like terms.
\frac{4x-24}{3x^{4}-15x^{2}-9x^{3}+9x+12}
Use the distributive property to multiply x^{2}-3x-4 by 3x^{2}-3 and combine like terms.
\frac{\frac{5}{x+1}-\frac{x+4}{x^{2}-3x-4}}{3x^{2}-3}
Divide 1 by \frac{3x^{2}-3}{\frac{5}{x+1}-\frac{x+4}{x^{2}-3x-4}} by multiplying 1 by the reciprocal of \frac{3x^{2}-3}{\frac{5}{x+1}-\frac{x+4}{x^{2}-3x-4}}.
\frac{\frac{5}{x+1}-\frac{x+4}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3}
Factor x^{2}-3x-4.
\frac{\frac{5\left(x-4\right)}{\left(x-4\right)\left(x+1\right)}-\frac{x+4}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and \left(x-4\right)\left(x+1\right) is \left(x-4\right)\left(x+1\right). Multiply \frac{5}{x+1} times \frac{x-4}{x-4}.
\frac{\frac{5\left(x-4\right)-\left(x+4\right)}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3}
Since \frac{5\left(x-4\right)}{\left(x-4\right)\left(x+1\right)} and \frac{x+4}{\left(x-4\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5x-20-x-4}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3}
Do the multiplications in 5\left(x-4\right)-\left(x+4\right).
\frac{\frac{4x-24}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3}
Combine like terms in 5x-20-x-4.
\frac{4x-24}{\left(x-4\right)\left(x+1\right)\left(3x^{2}-3\right)}
Express \frac{\frac{4x-24}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3} as a single fraction.
\frac{4x-24}{\left(x^{2}-3x-4\right)\left(3x^{2}-3\right)}
Use the distributive property to multiply x-4 by x+1 and combine like terms.
\frac{4x-24}{3x^{4}-15x^{2}-9x^{3}+9x+12}
Use the distributive property to multiply x^{2}-3x-4 by 3x^{2}-3 and combine like terms.