Evaluate
\frac{4\left(x-6\right)}{3\left(x-4\right)\left(x-1\right)\left(x+1\right)^{2}}
Expand
\frac{4\left(x-6\right)}{3\left(x-4\right)\left(x-1\right)\left(x+1\right)^{2}}
Graph
Share
Copied to clipboard
\frac{\frac{5}{x+1}-\frac{x+4}{x^{2}-3x-4}}{3x^{2}-3}
Divide 1 by \frac{3x^{2}-3}{\frac{5}{x+1}-\frac{x+4}{x^{2}-3x-4}} by multiplying 1 by the reciprocal of \frac{3x^{2}-3}{\frac{5}{x+1}-\frac{x+4}{x^{2}-3x-4}}.
\frac{\frac{5}{x+1}-\frac{x+4}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3}
Factor x^{2}-3x-4.
\frac{\frac{5\left(x-4\right)}{\left(x-4\right)\left(x+1\right)}-\frac{x+4}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and \left(x-4\right)\left(x+1\right) is \left(x-4\right)\left(x+1\right). Multiply \frac{5}{x+1} times \frac{x-4}{x-4}.
\frac{\frac{5\left(x-4\right)-\left(x+4\right)}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3}
Since \frac{5\left(x-4\right)}{\left(x-4\right)\left(x+1\right)} and \frac{x+4}{\left(x-4\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5x-20-x-4}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3}
Do the multiplications in 5\left(x-4\right)-\left(x+4\right).
\frac{\frac{4x-24}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3}
Combine like terms in 5x-20-x-4.
\frac{4x-24}{\left(x-4\right)\left(x+1\right)\left(3x^{2}-3\right)}
Express \frac{\frac{4x-24}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3} as a single fraction.
\frac{4x-24}{\left(x^{2}-3x-4\right)\left(3x^{2}-3\right)}
Use the distributive property to multiply x-4 by x+1 and combine like terms.
\frac{4x-24}{3x^{4}-15x^{2}-9x^{3}+9x+12}
Use the distributive property to multiply x^{2}-3x-4 by 3x^{2}-3 and combine like terms.
\frac{\frac{5}{x+1}-\frac{x+4}{x^{2}-3x-4}}{3x^{2}-3}
Divide 1 by \frac{3x^{2}-3}{\frac{5}{x+1}-\frac{x+4}{x^{2}-3x-4}} by multiplying 1 by the reciprocal of \frac{3x^{2}-3}{\frac{5}{x+1}-\frac{x+4}{x^{2}-3x-4}}.
\frac{\frac{5}{x+1}-\frac{x+4}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3}
Factor x^{2}-3x-4.
\frac{\frac{5\left(x-4\right)}{\left(x-4\right)\left(x+1\right)}-\frac{x+4}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and \left(x-4\right)\left(x+1\right) is \left(x-4\right)\left(x+1\right). Multiply \frac{5}{x+1} times \frac{x-4}{x-4}.
\frac{\frac{5\left(x-4\right)-\left(x+4\right)}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3}
Since \frac{5\left(x-4\right)}{\left(x-4\right)\left(x+1\right)} and \frac{x+4}{\left(x-4\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5x-20-x-4}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3}
Do the multiplications in 5\left(x-4\right)-\left(x+4\right).
\frac{\frac{4x-24}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3}
Combine like terms in 5x-20-x-4.
\frac{4x-24}{\left(x-4\right)\left(x+1\right)\left(3x^{2}-3\right)}
Express \frac{\frac{4x-24}{\left(x-4\right)\left(x+1\right)}}{3x^{2}-3} as a single fraction.
\frac{4x-24}{\left(x^{2}-3x-4\right)\left(3x^{2}-3\right)}
Use the distributive property to multiply x-4 by x+1 and combine like terms.
\frac{4x-24}{3x^{4}-15x^{2}-9x^{3}+9x+12}
Use the distributive property to multiply x^{2}-3x-4 by 3x^{2}-3 and combine like terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}