Solve for P
P=\frac{7\left(Q+1\right)}{A+7}
A\neq -7\text{ and }A\neq 0\text{ and }Q\neq -1
Solve for A
A=\frac{7\left(1+Q-P\right)}{P}
Q\neq -1\text{ and }P\neq 0\text{ and }P\neq Q+1
Share
Copied to clipboard
7\left(Q+1\right)\left(7+A\right)^{-1}A=PA
Multiply both sides of the equation by Q+1.
\left(7Q+7\right)\left(7+A\right)^{-1}A=PA
Use the distributive property to multiply 7 by Q+1.
\left(7Q\left(7+A\right)^{-1}+7\left(7+A\right)^{-1}\right)A=PA
Use the distributive property to multiply 7Q+7 by \left(7+A\right)^{-1}.
7Q\left(7+A\right)^{-1}A+7\left(7+A\right)^{-1}A=PA
Use the distributive property to multiply 7Q\left(7+A\right)^{-1}+7\left(7+A\right)^{-1} by A.
PA=7Q\left(7+A\right)^{-1}A+7\left(7+A\right)^{-1}A
Swap sides so that all variable terms are on the left hand side.
AP=7\times \frac{1}{A+7}AQ+7\times \frac{1}{A+7}A
Reorder the terms.
AP\left(A+7\right)=7\times 1AQ+7\times 1A
Multiply both sides of the equation by A+7.
PA^{2}+7AP=7\times 1AQ+7\times 1A
Use the distributive property to multiply AP by A+7.
PA^{2}+7AP=7AQ+7A
Do the multiplications.
\left(A^{2}+7A\right)P=7AQ+7A
Combine all terms containing P.
\frac{\left(A^{2}+7A\right)P}{A^{2}+7A}=\frac{7A\left(Q+1\right)}{A^{2}+7A}
Divide both sides by A^{2}+7A.
P=\frac{7A\left(Q+1\right)}{A^{2}+7A}
Dividing by A^{2}+7A undoes the multiplication by A^{2}+7A.
P=\frac{7\left(Q+1\right)}{A+7}
Divide 7A\left(1+Q\right) by A^{2}+7A.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}