Skip to main content
Solve for P
Tick mark Image
Solve for A
Tick mark Image

Similar Problems from Web Search

Share

7\left(Q+1\right)\left(7+A\right)^{-1}A=PA
Multiply both sides of the equation by Q+1.
\left(7Q+7\right)\left(7+A\right)^{-1}A=PA
Use the distributive property to multiply 7 by Q+1.
\left(7Q\left(7+A\right)^{-1}+7\left(7+A\right)^{-1}\right)A=PA
Use the distributive property to multiply 7Q+7 by \left(7+A\right)^{-1}.
7Q\left(7+A\right)^{-1}A+7\left(7+A\right)^{-1}A=PA
Use the distributive property to multiply 7Q\left(7+A\right)^{-1}+7\left(7+A\right)^{-1} by A.
PA=7Q\left(7+A\right)^{-1}A+7\left(7+A\right)^{-1}A
Swap sides so that all variable terms are on the left hand side.
AP=7\times \frac{1}{A+7}AQ+7\times \frac{1}{A+7}A
Reorder the terms.
AP\left(A+7\right)=7\times 1AQ+7\times 1A
Multiply both sides of the equation by A+7.
PA^{2}+7AP=7\times 1AQ+7\times 1A
Use the distributive property to multiply AP by A+7.
PA^{2}+7AP=7AQ+7A
Do the multiplications.
\left(A^{2}+7A\right)P=7AQ+7A
Combine all terms containing P.
\frac{\left(A^{2}+7A\right)P}{A^{2}+7A}=\frac{7A\left(Q+1\right)}{A^{2}+7A}
Divide both sides by A^{2}+7A.
P=\frac{7A\left(Q+1\right)}{A^{2}+7A}
Dividing by A^{2}+7A undoes the multiplication by A^{2}+7A.
P=\frac{7\left(Q+1\right)}{A+7}
Divide 7A\left(1+Q\right) by A^{2}+7A.