Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{\frac{1\left(6.343-15.632i\right)}{\left(6.343+15.632i\right)\left(6.343-15.632i\right)}+0.6-1.2i}
Multiply both numerator and denominator of \frac{1}{6.343+15.632i} by the complex conjugate of the denominator, 6.343-15.632i.
\frac{1}{\frac{1\left(6.343-15.632i\right)}{6.343^{2}-15.632^{2}i^{2}}+0.6-1.2i}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1}{\frac{1\left(6.343-15.632i\right)}{284.593073}+0.6-1.2i}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1}{\frac{6.343-15.632i}{284.593073}+0.6-1.2i}
Multiply 1 and 6.343-15.632i to get 6.343-15.632i.
\frac{1}{\frac{6343000}{284593073}-\frac{15632000}{284593073}i+0.6-1.2i}
Divide 6.343-15.632i by 284.593073 to get \frac{6343000}{284593073}-\frac{15632000}{284593073}i.
\frac{1}{\frac{6343000}{284593073}+0.6+\left(-\frac{15632000}{284593073}-1.2\right)i}
Combine the real and imaginary parts in \frac{6343000}{284593073}-\frac{15632000}{284593073}i+0.6-1.2i.
\frac{1}{\frac{885494219}{1422965365}-\frac{1785718438}{1422965365}i}
Do the additions in \frac{6343000}{284593073}+0.6+\left(-\frac{15632000}{284593073}-1.2\right)i.
\frac{1\left(\frac{885494219}{1422965365}+\frac{1785718438}{1422965365}i\right)}{\left(\frac{885494219}{1422965365}-\frac{1785718438}{1422965365}i\right)\left(\frac{885494219}{1422965365}+\frac{1785718438}{1422965365}i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, \frac{885494219}{1422965365}+\frac{1785718438}{1422965365}i.
\frac{1\left(\frac{885494219}{1422965365}+\frac{1785718438}{1422965365}i\right)}{\frac{885494219}{1422965365}^{2}-\frac{1785718438}{1422965365}^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1\left(\frac{885494219}{1422965365}+\frac{1785718438}{1422965365}i\right)}{\frac{2791979657}{1422965365}}
By definition, i^{2} is -1. Calculate the denominator.
\frac{\frac{885494219}{1422965365}+\frac{1785718438}{1422965365}i}{\frac{2791979657}{1422965365}}
Multiply 1 and \frac{885494219}{1422965365}+\frac{1785718438}{1422965365}i to get \frac{885494219}{1422965365}+\frac{1785718438}{1422965365}i.
\frac{885494219}{2791979657}+\frac{1785718438}{2791979657}i
Divide \frac{885494219}{1422965365}+\frac{1785718438}{1422965365}i by \frac{2791979657}{1422965365} to get \frac{885494219}{2791979657}+\frac{1785718438}{2791979657}i.
Re(\frac{1}{\frac{1\left(6.343-15.632i\right)}{\left(6.343+15.632i\right)\left(6.343-15.632i\right)}+0.6-1.2i})
Multiply both numerator and denominator of \frac{1}{6.343+15.632i} by the complex conjugate of the denominator, 6.343-15.632i.
Re(\frac{1}{\frac{1\left(6.343-15.632i\right)}{6.343^{2}-15.632^{2}i^{2}}+0.6-1.2i})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1}{\frac{1\left(6.343-15.632i\right)}{284.593073}+0.6-1.2i})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1}{\frac{6.343-15.632i}{284.593073}+0.6-1.2i})
Multiply 1 and 6.343-15.632i to get 6.343-15.632i.
Re(\frac{1}{\frac{6343000}{284593073}-\frac{15632000}{284593073}i+0.6-1.2i})
Divide 6.343-15.632i by 284.593073 to get \frac{6343000}{284593073}-\frac{15632000}{284593073}i.
Re(\frac{1}{\frac{6343000}{284593073}+0.6+\left(-\frac{15632000}{284593073}-1.2\right)i})
Combine the real and imaginary parts in \frac{6343000}{284593073}-\frac{15632000}{284593073}i+0.6-1.2i.
Re(\frac{1}{\frac{885494219}{1422965365}-\frac{1785718438}{1422965365}i})
Do the additions in \frac{6343000}{284593073}+0.6+\left(-\frac{15632000}{284593073}-1.2\right)i.
Re(\frac{1\left(\frac{885494219}{1422965365}+\frac{1785718438}{1422965365}i\right)}{\left(\frac{885494219}{1422965365}-\frac{1785718438}{1422965365}i\right)\left(\frac{885494219}{1422965365}+\frac{1785718438}{1422965365}i\right)})
Multiply both numerator and denominator of \frac{1}{\frac{885494219}{1422965365}-\frac{1785718438}{1422965365}i} by the complex conjugate of the denominator, \frac{885494219}{1422965365}+\frac{1785718438}{1422965365}i.
Re(\frac{1\left(\frac{885494219}{1422965365}+\frac{1785718438}{1422965365}i\right)}{\frac{885494219}{1422965365}^{2}-\frac{1785718438}{1422965365}^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(\frac{885494219}{1422965365}+\frac{1785718438}{1422965365}i\right)}{\frac{2791979657}{1422965365}})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{\frac{885494219}{1422965365}+\frac{1785718438}{1422965365}i}{\frac{2791979657}{1422965365}})
Multiply 1 and \frac{885494219}{1422965365}+\frac{1785718438}{1422965365}i to get \frac{885494219}{1422965365}+\frac{1785718438}{1422965365}i.
Re(\frac{885494219}{2791979657}+\frac{1785718438}{2791979657}i)
Divide \frac{885494219}{1422965365}+\frac{1785718438}{1422965365}i by \frac{2791979657}{1422965365} to get \frac{885494219}{2791979657}+\frac{1785718438}{2791979657}i.
\frac{885494219}{2791979657}
The real part of \frac{885494219}{2791979657}+\frac{1785718438}{2791979657}i is \frac{885494219}{2791979657}.