Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{\left(\frac{1}{4}\times 2+\frac{1}{4}\left(-1\right)x\right)\left(2+x\right)}
Use the distributive property to multiply \frac{1}{4} by 2-x.
\frac{1}{\left(\frac{2}{4}+\frac{1}{4}\left(-1\right)x\right)\left(2+x\right)}
Multiply \frac{1}{4} and 2 to get \frac{2}{4}.
\frac{1}{\left(\frac{1}{2}+\frac{1}{4}\left(-1\right)x\right)\left(2+x\right)}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{\left(\frac{1}{2}-\frac{1}{4}x\right)\left(2+x\right)}
Multiply \frac{1}{4} and -1 to get -\frac{1}{4}.
\frac{1}{\frac{1}{2}\times 2+\frac{1}{2}x-\frac{1}{4}x\times 2-\frac{1}{4}xx}
Apply the distributive property by multiplying each term of \frac{1}{2}-\frac{1}{4}x by each term of 2+x.
\frac{1}{\frac{1}{2}\times 2+\frac{1}{2}x-\frac{1}{4}x\times 2-\frac{1}{4}x^{2}}
Multiply x and x to get x^{2}.
\frac{1}{1+\frac{1}{2}x-\frac{1}{4}x\times 2-\frac{1}{4}x^{2}}
Cancel out 2 and 2.
\frac{1}{1+\frac{1}{2}x+\frac{-2}{4}x-\frac{1}{4}x^{2}}
Express -\frac{1}{4}\times 2 as a single fraction.
\frac{1}{1+\frac{1}{2}x-\frac{1}{2}x-\frac{1}{4}x^{2}}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{1-\frac{1}{4}x^{2}}
Combine \frac{1}{2}x and -\frac{1}{2}x to get 0.
\frac{1}{\left(\frac{1}{4}\times 2+\frac{1}{4}\left(-1\right)x\right)\left(2+x\right)}
Use the distributive property to multiply \frac{1}{4} by 2-x.
\frac{1}{\left(\frac{2}{4}+\frac{1}{4}\left(-1\right)x\right)\left(2+x\right)}
Multiply \frac{1}{4} and 2 to get \frac{2}{4}.
\frac{1}{\left(\frac{1}{2}+\frac{1}{4}\left(-1\right)x\right)\left(2+x\right)}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{\left(\frac{1}{2}-\frac{1}{4}x\right)\left(2+x\right)}
Multiply \frac{1}{4} and -1 to get -\frac{1}{4}.
\frac{1}{\frac{1}{2}\times 2+\frac{1}{2}x-\frac{1}{4}x\times 2-\frac{1}{4}xx}
Apply the distributive property by multiplying each term of \frac{1}{2}-\frac{1}{4}x by each term of 2+x.
\frac{1}{\frac{1}{2}\times 2+\frac{1}{2}x-\frac{1}{4}x\times 2-\frac{1}{4}x^{2}}
Multiply x and x to get x^{2}.
\frac{1}{1+\frac{1}{2}x-\frac{1}{4}x\times 2-\frac{1}{4}x^{2}}
Cancel out 2 and 2.
\frac{1}{1+\frac{1}{2}x+\frac{-2}{4}x-\frac{1}{4}x^{2}}
Express -\frac{1}{4}\times 2 as a single fraction.
\frac{1}{1+\frac{1}{2}x-\frac{1}{2}x-\frac{1}{4}x^{2}}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{1-\frac{1}{4}x^{2}}
Combine \frac{1}{2}x and -\frac{1}{2}x to get 0.