Evaluate
\frac{4}{4-x^{2}}
Expand
\frac{4}{4-x^{2}}
Graph
Share
Copied to clipboard
\frac{1}{\left(\frac{1}{4}\times 2+\frac{1}{4}\left(-1\right)x\right)\left(2+x\right)}
Use the distributive property to multiply \frac{1}{4} by 2-x.
\frac{1}{\left(\frac{2}{4}+\frac{1}{4}\left(-1\right)x\right)\left(2+x\right)}
Multiply \frac{1}{4} and 2 to get \frac{2}{4}.
\frac{1}{\left(\frac{1}{2}+\frac{1}{4}\left(-1\right)x\right)\left(2+x\right)}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{\left(\frac{1}{2}-\frac{1}{4}x\right)\left(2+x\right)}
Multiply \frac{1}{4} and -1 to get -\frac{1}{4}.
\frac{1}{\frac{1}{2}\times 2+\frac{1}{2}x-\frac{1}{4}x\times 2-\frac{1}{4}xx}
Apply the distributive property by multiplying each term of \frac{1}{2}-\frac{1}{4}x by each term of 2+x.
\frac{1}{\frac{1}{2}\times 2+\frac{1}{2}x-\frac{1}{4}x\times 2-\frac{1}{4}x^{2}}
Multiply x and x to get x^{2}.
\frac{1}{1+\frac{1}{2}x-\frac{1}{4}x\times 2-\frac{1}{4}x^{2}}
Cancel out 2 and 2.
\frac{1}{1+\frac{1}{2}x+\frac{-2}{4}x-\frac{1}{4}x^{2}}
Express -\frac{1}{4}\times 2 as a single fraction.
\frac{1}{1+\frac{1}{2}x-\frac{1}{2}x-\frac{1}{4}x^{2}}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{1-\frac{1}{4}x^{2}}
Combine \frac{1}{2}x and -\frac{1}{2}x to get 0.
\frac{1}{\left(\frac{1}{4}\times 2+\frac{1}{4}\left(-1\right)x\right)\left(2+x\right)}
Use the distributive property to multiply \frac{1}{4} by 2-x.
\frac{1}{\left(\frac{2}{4}+\frac{1}{4}\left(-1\right)x\right)\left(2+x\right)}
Multiply \frac{1}{4} and 2 to get \frac{2}{4}.
\frac{1}{\left(\frac{1}{2}+\frac{1}{4}\left(-1\right)x\right)\left(2+x\right)}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{\left(\frac{1}{2}-\frac{1}{4}x\right)\left(2+x\right)}
Multiply \frac{1}{4} and -1 to get -\frac{1}{4}.
\frac{1}{\frac{1}{2}\times 2+\frac{1}{2}x-\frac{1}{4}x\times 2-\frac{1}{4}xx}
Apply the distributive property by multiplying each term of \frac{1}{2}-\frac{1}{4}x by each term of 2+x.
\frac{1}{\frac{1}{2}\times 2+\frac{1}{2}x-\frac{1}{4}x\times 2-\frac{1}{4}x^{2}}
Multiply x and x to get x^{2}.
\frac{1}{1+\frac{1}{2}x-\frac{1}{4}x\times 2-\frac{1}{4}x^{2}}
Cancel out 2 and 2.
\frac{1}{1+\frac{1}{2}x+\frac{-2}{4}x-\frac{1}{4}x^{2}}
Express -\frac{1}{4}\times 2 as a single fraction.
\frac{1}{1+\frac{1}{2}x-\frac{1}{2}x-\frac{1}{4}x^{2}}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{1-\frac{1}{4}x^{2}}
Combine \frac{1}{2}x and -\frac{1}{2}x to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}