Solve for x
x = -\frac{162}{115} = -1\frac{47}{115} \approx -1.408695652
Graph
Share
Copied to clipboard
1\times 4\left(2-3\left(x+2\right)\right)=\frac{1}{5}\left(-3x+1+\frac{1}{2}x\right)
Divide 1 by \frac{1}{4} by multiplying 1 by the reciprocal of \frac{1}{4}.
4\left(2-3\left(x+2\right)\right)=\frac{1}{5}\left(-3x+1+\frac{1}{2}x\right)
Multiply 1 and 4 to get 4.
4\left(2-3x-6\right)=\frac{1}{5}\left(-3x+1+\frac{1}{2}x\right)
Use the distributive property to multiply -3 by x+2.
4\left(-4-3x\right)=\frac{1}{5}\left(-3x+1+\frac{1}{2}x\right)
Subtract 6 from 2 to get -4.
-16-12x=\frac{1}{5}\left(-3x+1+\frac{1}{2}x\right)
Use the distributive property to multiply 4 by -4-3x.
-16-12x=\frac{1}{5}\left(-\frac{5}{2}x+1\right)
Combine -3x and \frac{1}{2}x to get -\frac{5}{2}x.
-16-12x=\frac{1}{5}\left(-\frac{5}{2}\right)x+\frac{1}{5}
Use the distributive property to multiply \frac{1}{5} by -\frac{5}{2}x+1.
-16-12x=\frac{1\left(-5\right)}{5\times 2}x+\frac{1}{5}
Multiply \frac{1}{5} times -\frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
-16-12x=\frac{-5}{10}x+\frac{1}{5}
Do the multiplications in the fraction \frac{1\left(-5\right)}{5\times 2}.
-16-12x=-\frac{1}{2}x+\frac{1}{5}
Reduce the fraction \frac{-5}{10} to lowest terms by extracting and canceling out 5.
-16-12x+\frac{1}{2}x=\frac{1}{5}
Add \frac{1}{2}x to both sides.
-16-\frac{23}{2}x=\frac{1}{5}
Combine -12x and \frac{1}{2}x to get -\frac{23}{2}x.
-\frac{23}{2}x=\frac{1}{5}+16
Add 16 to both sides.
-\frac{23}{2}x=\frac{1}{5}+\frac{80}{5}
Convert 16 to fraction \frac{80}{5}.
-\frac{23}{2}x=\frac{1+80}{5}
Since \frac{1}{5} and \frac{80}{5} have the same denominator, add them by adding their numerators.
-\frac{23}{2}x=\frac{81}{5}
Add 1 and 80 to get 81.
x=\frac{81}{5}\left(-\frac{2}{23}\right)
Multiply both sides by -\frac{2}{23}, the reciprocal of -\frac{23}{2}.
x=\frac{81\left(-2\right)}{5\times 23}
Multiply \frac{81}{5} times -\frac{2}{23} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-162}{115}
Do the multiplications in the fraction \frac{81\left(-2\right)}{5\times 23}.
x=-\frac{162}{115}
Fraction \frac{-162}{115} can be rewritten as -\frac{162}{115} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}