Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1\times 4\left(2-3\left(x+2\right)\right)=\frac{1}{5}\left(-3x+1+\frac{1}{2}x\right)
Divide 1 by \frac{1}{4} by multiplying 1 by the reciprocal of \frac{1}{4}.
4\left(2-3\left(x+2\right)\right)=\frac{1}{5}\left(-3x+1+\frac{1}{2}x\right)
Multiply 1 and 4 to get 4.
4\left(2-3x-6\right)=\frac{1}{5}\left(-3x+1+\frac{1}{2}x\right)
Use the distributive property to multiply -3 by x+2.
4\left(-4-3x\right)=\frac{1}{5}\left(-3x+1+\frac{1}{2}x\right)
Subtract 6 from 2 to get -4.
-16-12x=\frac{1}{5}\left(-3x+1+\frac{1}{2}x\right)
Use the distributive property to multiply 4 by -4-3x.
-16-12x=\frac{1}{5}\left(-\frac{5}{2}x+1\right)
Combine -3x and \frac{1}{2}x to get -\frac{5}{2}x.
-16-12x=\frac{1}{5}\left(-\frac{5}{2}\right)x+\frac{1}{5}
Use the distributive property to multiply \frac{1}{5} by -\frac{5}{2}x+1.
-16-12x=\frac{1\left(-5\right)}{5\times 2}x+\frac{1}{5}
Multiply \frac{1}{5} times -\frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
-16-12x=\frac{-5}{10}x+\frac{1}{5}
Do the multiplications in the fraction \frac{1\left(-5\right)}{5\times 2}.
-16-12x=-\frac{1}{2}x+\frac{1}{5}
Reduce the fraction \frac{-5}{10} to lowest terms by extracting and canceling out 5.
-16-12x+\frac{1}{2}x=\frac{1}{5}
Add \frac{1}{2}x to both sides.
-16-\frac{23}{2}x=\frac{1}{5}
Combine -12x and \frac{1}{2}x to get -\frac{23}{2}x.
-\frac{23}{2}x=\frac{1}{5}+16
Add 16 to both sides.
-\frac{23}{2}x=\frac{1}{5}+\frac{80}{5}
Convert 16 to fraction \frac{80}{5}.
-\frac{23}{2}x=\frac{1+80}{5}
Since \frac{1}{5} and \frac{80}{5} have the same denominator, add them by adding their numerators.
-\frac{23}{2}x=\frac{81}{5}
Add 1 and 80 to get 81.
x=\frac{81}{5}\left(-\frac{2}{23}\right)
Multiply both sides by -\frac{2}{23}, the reciprocal of -\frac{23}{2}.
x=\frac{81\left(-2\right)}{5\times 23}
Multiply \frac{81}{5} times -\frac{2}{23} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-162}{115}
Do the multiplications in the fraction \frac{81\left(-2\right)}{5\times 23}.
x=-\frac{162}{115}
Fraction \frac{-162}{115} can be rewritten as -\frac{162}{115} by extracting the negative sign.