Evaluate
\frac{2}{199}\approx 0.010050251
Factor
\frac{2}{199} = 0.010050251256281407
Share
Copied to clipboard
1\times 2-\frac{1}{\frac{1}{2}+\frac{\frac{1}{4}}{99}}
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
2-\frac{1}{\frac{1}{2}+\frac{\frac{1}{4}}{99}}
Multiply 1 and 2 to get 2.
2-\frac{1}{\frac{1}{2}+\frac{1}{4\times 99}}
Express \frac{\frac{1}{4}}{99} as a single fraction.
2-\frac{1}{\frac{1}{2}+\frac{1}{396}}
Multiply 4 and 99 to get 396.
2-\frac{1}{\frac{198}{396}+\frac{1}{396}}
Least common multiple of 2 and 396 is 396. Convert \frac{1}{2} and \frac{1}{396} to fractions with denominator 396.
2-\frac{1}{\frac{198+1}{396}}
Since \frac{198}{396} and \frac{1}{396} have the same denominator, add them by adding their numerators.
2-\frac{1}{\frac{199}{396}}
Add 198 and 1 to get 199.
2-1\times \frac{396}{199}
Divide 1 by \frac{199}{396} by multiplying 1 by the reciprocal of \frac{199}{396}.
2-\frac{396}{199}
Multiply 1 and \frac{396}{199} to get \frac{396}{199}.
\frac{398}{199}-\frac{396}{199}
Convert 2 to fraction \frac{398}{199}.
\frac{398-396}{199}
Since \frac{398}{199} and \frac{396}{199} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{199}
Subtract 396 from 398 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}