Evaluate
\frac{480}{403}\approx 1.191066998
Factor
\frac{2 ^ {5} \cdot 3 \cdot 5}{13 \cdot 31} = 1\frac{77}{403} = 1.1910669975186103
Share
Copied to clipboard
\frac{1}{\frac{1}{\frac{40}{93}+\frac{248}{93}}+\frac{1}{\frac{25}{93}+\frac{5}{3}}}
Least common multiple of 93 and 3 is 93. Convert \frac{40}{93} and \frac{8}{3} to fractions with denominator 93.
\frac{1}{\frac{1}{\frac{40+248}{93}}+\frac{1}{\frac{25}{93}+\frac{5}{3}}}
Since \frac{40}{93} and \frac{248}{93} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{1}{\frac{288}{93}}+\frac{1}{\frac{25}{93}+\frac{5}{3}}}
Add 40 and 248 to get 288.
\frac{1}{\frac{1}{\frac{96}{31}}+\frac{1}{\frac{25}{93}+\frac{5}{3}}}
Reduce the fraction \frac{288}{93} to lowest terms by extracting and canceling out 3.
\frac{1}{1\times \frac{31}{96}+\frac{1}{\frac{25}{93}+\frac{5}{3}}}
Divide 1 by \frac{96}{31} by multiplying 1 by the reciprocal of \frac{96}{31}.
\frac{1}{\frac{31}{96}+\frac{1}{\frac{25}{93}+\frac{5}{3}}}
Multiply 1 and \frac{31}{96} to get \frac{31}{96}.
\frac{1}{\frac{31}{96}+\frac{1}{\frac{25}{93}+\frac{155}{93}}}
Least common multiple of 93 and 3 is 93. Convert \frac{25}{93} and \frac{5}{3} to fractions with denominator 93.
\frac{1}{\frac{31}{96}+\frac{1}{\frac{25+155}{93}}}
Since \frac{25}{93} and \frac{155}{93} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{31}{96}+\frac{1}{\frac{180}{93}}}
Add 25 and 155 to get 180.
\frac{1}{\frac{31}{96}+\frac{1}{\frac{60}{31}}}
Reduce the fraction \frac{180}{93} to lowest terms by extracting and canceling out 3.
\frac{1}{\frac{31}{96}+1\times \frac{31}{60}}
Divide 1 by \frac{60}{31} by multiplying 1 by the reciprocal of \frac{60}{31}.
\frac{1}{\frac{31}{96}+\frac{31}{60}}
Multiply 1 and \frac{31}{60} to get \frac{31}{60}.
\frac{1}{\frac{155}{480}+\frac{248}{480}}
Least common multiple of 96 and 60 is 480. Convert \frac{31}{96} and \frac{31}{60} to fractions with denominator 480.
\frac{1}{\frac{155+248}{480}}
Since \frac{155}{480} and \frac{248}{480} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{403}{480}}
Add 155 and 248 to get 403.
1\times \frac{480}{403}
Divide 1 by \frac{403}{480} by multiplying 1 by the reciprocal of \frac{403}{480}.
\frac{480}{403}
Multiply 1 and \frac{480}{403} to get \frac{480}{403}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}