Evaluate
\frac{2x}{x^{2}+\sqrt{3}}
Factor
\frac{2x}{x^{2}+\sqrt{3}}
Graph
Share
Copied to clipboard
\frac{1}{\frac{\sqrt{3}}{2x}+\frac{xx}{2x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x and 2 is 2x. Multiply \frac{x}{2} times \frac{x}{x}.
\frac{1}{\frac{\sqrt{3}+xx}{2x}}
Since \frac{\sqrt{3}}{2x} and \frac{xx}{2x} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{\sqrt{3}+x^{2}}{2x}}
Do the multiplications in \sqrt{3}+xx.
\frac{2x}{\sqrt{3}+x^{2}}
Divide 1 by \frac{\sqrt{3}+x^{2}}{2x} by multiplying 1 by the reciprocal of \frac{\sqrt{3}+x^{2}}{2x}.
\frac{2x\left(\sqrt{3}-x^{2}\right)}{\left(\sqrt{3}+x^{2}\right)\left(\sqrt{3}-x^{2}\right)}
Rationalize the denominator of \frac{2x}{\sqrt{3}+x^{2}} by multiplying numerator and denominator by \sqrt{3}-x^{2}.
\frac{2x\left(\sqrt{3}-x^{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(x^{2}\right)^{2}}
Consider \left(\sqrt{3}+x^{2}\right)\left(\sqrt{3}-x^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2x\left(\sqrt{3}-x^{2}\right)}{\left(\sqrt{3}\right)^{2}-x^{4}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{2x\left(\sqrt{3}-x^{2}\right)}{3-x^{4}}
The square of \sqrt{3} is 3.
\frac{2x\sqrt{3}-2x^{3}}{3-x^{4}}
Use the distributive property to multiply 2x by \sqrt{3}-x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}