Evaluate
\frac{MN\alpha }{M+N}
Expand
\frac{MN\alpha }{M+N}
Quiz
5 problems similar to:
\frac { 1 } { \frac { \frac { 1 } { M } + \frac { 1 } { N } } { \alpha } }
Share
Copied to clipboard
\frac{\alpha }{\frac{1}{M}+\frac{1}{N}}
Divide 1 by \frac{\frac{1}{M}+\frac{1}{N}}{\alpha } by multiplying 1 by the reciprocal of \frac{\frac{1}{M}+\frac{1}{N}}{\alpha }.
\frac{\alpha }{\frac{N}{MN}+\frac{M}{MN}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of M and N is MN. Multiply \frac{1}{M} times \frac{N}{N}. Multiply \frac{1}{N} times \frac{M}{M}.
\frac{\alpha }{\frac{N+M}{MN}}
Since \frac{N}{MN} and \frac{M}{MN} have the same denominator, add them by adding their numerators.
\frac{\alpha MN}{N+M}
Divide \alpha by \frac{N+M}{MN} by multiplying \alpha by the reciprocal of \frac{N+M}{MN}.
\frac{\alpha }{\frac{1}{M}+\frac{1}{N}}
Divide 1 by \frac{\frac{1}{M}+\frac{1}{N}}{\alpha } by multiplying 1 by the reciprocal of \frac{\frac{1}{M}+\frac{1}{N}}{\alpha }.
\frac{\alpha }{\frac{N}{MN}+\frac{M}{MN}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of M and N is MN. Multiply \frac{1}{M} times \frac{N}{N}. Multiply \frac{1}{N} times \frac{M}{M}.
\frac{\alpha }{\frac{N+M}{MN}}
Since \frac{N}{MN} and \frac{M}{MN} have the same denominator, add them by adding their numerators.
\frac{\alpha MN}{N+M}
Divide \alpha by \frac{N+M}{MN} by multiplying \alpha by the reciprocal of \frac{N+M}{MN}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}