Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{\frac{\sqrt{3}}{2}-\frac{1}{5}}
Get the value of \cos(30) from trigonometric values table.
\frac{1}{\frac{5\sqrt{3}}{10}-\frac{2}{10}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 5 is 10. Multiply \frac{\sqrt{3}}{2} times \frac{5}{5}. Multiply \frac{1}{5} times \frac{2}{2}.
\frac{1}{\frac{5\sqrt{3}-2}{10}}
Since \frac{5\sqrt{3}}{10} and \frac{2}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{10}{5\sqrt{3}-2}
Divide 1 by \frac{5\sqrt{3}-2}{10} by multiplying 1 by the reciprocal of \frac{5\sqrt{3}-2}{10}.
\frac{10\left(5\sqrt{3}+2\right)}{\left(5\sqrt{3}-2\right)\left(5\sqrt{3}+2\right)}
Rationalize the denominator of \frac{10}{5\sqrt{3}-2} by multiplying numerator and denominator by 5\sqrt{3}+2.
\frac{10\left(5\sqrt{3}+2\right)}{\left(5\sqrt{3}\right)^{2}-2^{2}}
Consider \left(5\sqrt{3}-2\right)\left(5\sqrt{3}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{10\left(5\sqrt{3}+2\right)}{5^{2}\left(\sqrt{3}\right)^{2}-2^{2}}
Expand \left(5\sqrt{3}\right)^{2}.
\frac{10\left(5\sqrt{3}+2\right)}{25\left(\sqrt{3}\right)^{2}-2^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{10\left(5\sqrt{3}+2\right)}{25\times 3-2^{2}}
The square of \sqrt{3} is 3.
\frac{10\left(5\sqrt{3}+2\right)}{75-2^{2}}
Multiply 25 and 3 to get 75.
\frac{10\left(5\sqrt{3}+2\right)}{75-4}
Calculate 2 to the power of 2 and get 4.
\frac{10\left(5\sqrt{3}+2\right)}{71}
Subtract 4 from 75 to get 71.
\frac{50\sqrt{3}+20}{71}
Use the distributive property to multiply 10 by 5\sqrt{3}+2.