Solve for α
\alpha =2\pi +1\approx 7.283185307
Share
Copied to clipboard
1=\frac{1}{2}\left(\alpha -1\right)\pi ^{-1}
Variable \alpha cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by \alpha -1.
1=\left(\frac{1}{2}\alpha -\frac{1}{2}\right)\pi ^{-1}
Use the distributive property to multiply \frac{1}{2} by \alpha -1.
1=\frac{1}{2}\alpha \pi ^{-1}-\frac{1}{2}\pi ^{-1}
Use the distributive property to multiply \frac{1}{2}\alpha -\frac{1}{2} by \pi ^{-1}.
\frac{1}{2}\alpha \pi ^{-1}-\frac{1}{2}\pi ^{-1}=1
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}\alpha \pi ^{-1}=1+\frac{1}{2}\pi ^{-1}
Add \frac{1}{2}\pi ^{-1} to both sides.
\frac{1}{2}\times \frac{1}{\pi }\alpha =\frac{1}{2}\times \frac{1}{\pi }+1
Reorder the terms.
\frac{1}{2\pi }\alpha =\frac{1}{2}\times \frac{1}{\pi }+1
Multiply \frac{1}{2} times \frac{1}{\pi } by multiplying numerator times numerator and denominator times denominator.
\frac{\alpha }{2\pi }=\frac{1}{2}\times \frac{1}{\pi }+1
Express \frac{1}{2\pi }\alpha as a single fraction.
\frac{\alpha }{2\pi }=\frac{1}{2\pi }+1
Multiply \frac{1}{2} times \frac{1}{\pi } by multiplying numerator times numerator and denominator times denominator.
\frac{\alpha }{2\pi }=\frac{1}{2\pi }+\frac{2\pi }{2\pi }
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2\pi }{2\pi }.
\frac{\alpha }{2\pi }=\frac{1+2\pi }{2\pi }
Since \frac{1}{2\pi } and \frac{2\pi }{2\pi } have the same denominator, add them by adding their numerators.
\frac{1}{2\pi }\alpha =\frac{2\pi +1}{2\pi }
The equation is in standard form.
\frac{\frac{1}{2\pi }\alpha \times 2\pi }{1}=\frac{2\pi +1}{2\pi \times \frac{1}{2\pi }}
Divide both sides by \frac{1}{2}\pi ^{-1}.
\alpha =\frac{2\pi +1}{2\pi \times \frac{1}{2\pi }}
Dividing by \frac{1}{2}\pi ^{-1} undoes the multiplication by \frac{1}{2}\pi ^{-1}.
\alpha =2\pi +1
Divide \frac{1+2\pi }{2\pi } by \frac{1}{2}\pi ^{-1}.
\alpha =2\pi +1\text{, }\alpha \neq 1
Variable \alpha cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}