Evaluate
\frac{9}{4n^{2}-1}
Expand
\frac{9}{4n^{2}-1}
Share
Copied to clipboard
\frac{1}{\left(\frac{1}{3}+\frac{2}{3}\left(n-1\right)\right)\times \frac{1+2n}{3}}
Since \frac{1}{3} and \frac{2n}{3} have the same denominator, add them by adding their numerators.
\frac{1}{\left(\frac{1}{3}+\frac{2}{3}n+\frac{2}{3}\left(-1\right)\right)\times \frac{1+2n}{3}}
Use the distributive property to multiply \frac{2}{3} by n-1.
\frac{1}{\left(\frac{1}{3}+\frac{2}{3}n-\frac{2}{3}\right)\times \frac{1+2n}{3}}
Multiply \frac{2}{3} and -1 to get -\frac{2}{3}.
\frac{1}{\left(\frac{1-2}{3}+\frac{2}{3}n\right)\times \frac{1+2n}{3}}
Since \frac{1}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{\left(-\frac{1}{3}+\frac{2}{3}n\right)\times \frac{1+2n}{3}}
Subtract 2 from 1 to get -1.
\frac{1}{-\frac{1}{3}\times \frac{1+2n}{3}+\frac{2}{3}n\times \frac{1+2n}{3}}
Use the distributive property to multiply -\frac{1}{3}+\frac{2}{3}n by \frac{1+2n}{3}.
\frac{1}{\frac{-\left(1+2n\right)}{3\times 3}+\frac{2}{3}n\times \frac{1+2n}{3}}
Multiply -\frac{1}{3} times \frac{1+2n}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{\frac{-\left(1+2n\right)}{3\times 3}+\frac{2\left(1+2n\right)}{3\times 3}n}
Multiply \frac{2}{3} times \frac{1+2n}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{\frac{-\left(1+2n\right)}{9}+\frac{2\left(1+2n\right)}{3\times 3}n}
Multiply 3 and 3 to get 9.
\frac{1}{\frac{-\left(1+2n\right)}{9}+\frac{2\left(1+2n\right)}{9}n}
Multiply 3 and 3 to get 9.
\frac{1}{\frac{-\left(1+2n\right)}{9}+\frac{2\left(1+2n\right)n}{9}}
Express \frac{2\left(1+2n\right)}{9}n as a single fraction.
\frac{1}{\frac{-\left(1+2n\right)+2\left(1+2n\right)n}{9}}
Since \frac{-\left(1+2n\right)}{9} and \frac{2\left(1+2n\right)n}{9} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{-1-2n+2n+4n^{2}}{9}}
Do the multiplications in -\left(1+2n\right)+2\left(1+2n\right)n.
\frac{1}{\frac{-1+4n^{2}}{9}}
Combine like terms in -1-2n+2n+4n^{2}.
\frac{9}{-1+4n^{2}}
Divide 1 by \frac{-1+4n^{2}}{9} by multiplying 1 by the reciprocal of \frac{-1+4n^{2}}{9}.
\frac{1}{\left(\frac{1}{3}+\frac{2}{3}\left(n-1\right)\right)\times \frac{1+2n}{3}}
Since \frac{1}{3} and \frac{2n}{3} have the same denominator, add them by adding their numerators.
\frac{1}{\left(\frac{1}{3}+\frac{2}{3}n+\frac{2}{3}\left(-1\right)\right)\times \frac{1+2n}{3}}
Use the distributive property to multiply \frac{2}{3} by n-1.
\frac{1}{\left(\frac{1}{3}+\frac{2}{3}n-\frac{2}{3}\right)\times \frac{1+2n}{3}}
Multiply \frac{2}{3} and -1 to get -\frac{2}{3}.
\frac{1}{\left(\frac{1-2}{3}+\frac{2}{3}n\right)\times \frac{1+2n}{3}}
Since \frac{1}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{\left(-\frac{1}{3}+\frac{2}{3}n\right)\times \frac{1+2n}{3}}
Subtract 2 from 1 to get -1.
\frac{1}{-\frac{1}{3}\times \frac{1+2n}{3}+\frac{2}{3}n\times \frac{1+2n}{3}}
Use the distributive property to multiply -\frac{1}{3}+\frac{2}{3}n by \frac{1+2n}{3}.
\frac{1}{\frac{-\left(1+2n\right)}{3\times 3}+\frac{2}{3}n\times \frac{1+2n}{3}}
Multiply -\frac{1}{3} times \frac{1+2n}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{\frac{-\left(1+2n\right)}{3\times 3}+\frac{2\left(1+2n\right)}{3\times 3}n}
Multiply \frac{2}{3} times \frac{1+2n}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{\frac{-\left(1+2n\right)}{9}+\frac{2\left(1+2n\right)}{3\times 3}n}
Multiply 3 and 3 to get 9.
\frac{1}{\frac{-\left(1+2n\right)}{9}+\frac{2\left(1+2n\right)}{9}n}
Multiply 3 and 3 to get 9.
\frac{1}{\frac{-\left(1+2n\right)}{9}+\frac{2\left(1+2n\right)n}{9}}
Express \frac{2\left(1+2n\right)}{9}n as a single fraction.
\frac{1}{\frac{-\left(1+2n\right)+2\left(1+2n\right)n}{9}}
Since \frac{-\left(1+2n\right)}{9} and \frac{2\left(1+2n\right)n}{9} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{-1-2n+2n+4n^{2}}{9}}
Do the multiplications in -\left(1+2n\right)+2\left(1+2n\right)n.
\frac{1}{\frac{-1+4n^{2}}{9}}
Combine like terms in -1-2n+2n+4n^{2}.
\frac{9}{-1+4n^{2}}
Divide 1 by \frac{-1+4n^{2}}{9} by multiplying 1 by the reciprocal of \frac{-1+4n^{2}}{9}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}