Solve for a
a=\frac{\left(2x+1\right)^{2}}{x}
x\neq 0\text{ and }x\neq -\frac{1}{2}
Solve for x
x=\frac{-\sqrt{a\left(a-8\right)}+a-4}{8}
x=\frac{\sqrt{a\left(a-8\right)}+a-4}{8}\text{, }a\geq 8\text{ or }a<0
Graph
Quiz
Linear Equation
5 problems similar to:
\frac { 1 } { + 1 } = \frac { a x } { ( 2 x + 1 ) ^ { 2 } } =
Share
Copied to clipboard
\left(2x+1\right)^{2}=ax
Multiply both sides of the equation by \left(2x+1\right)^{2}.
4x^{2}+4x+1=ax
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
ax=4x^{2}+4x+1
Swap sides so that all variable terms are on the left hand side.
xa=4x^{2}+4x+1
The equation is in standard form.
\frac{xa}{x}=\frac{\left(2x+1\right)^{2}}{x}
Divide both sides by x.
a=\frac{\left(2x+1\right)^{2}}{x}
Dividing by x undoes the multiplication by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}