Evaluate
\frac{5}{4}=1.25
Factor
\frac{5}{2 ^ {2}} = 1\frac{1}{4} = 1.25
Share
Copied to clipboard
\frac{\frac{3+2}{3}-\frac{3\times 2+1}{2}}{\frac{2\times 5+1}{5}-\frac{3\times 3+2}{3}}
Multiply 1 and 3 to get 3.
\frac{\frac{5}{3}-\frac{3\times 2+1}{2}}{\frac{2\times 5+1}{5}-\frac{3\times 3+2}{3}}
Add 3 and 2 to get 5.
\frac{\frac{5}{3}-\frac{6+1}{2}}{\frac{2\times 5+1}{5}-\frac{3\times 3+2}{3}}
Multiply 3 and 2 to get 6.
\frac{\frac{5}{3}-\frac{7}{2}}{\frac{2\times 5+1}{5}-\frac{3\times 3+2}{3}}
Add 6 and 1 to get 7.
\frac{\frac{10}{6}-\frac{21}{6}}{\frac{2\times 5+1}{5}-\frac{3\times 3+2}{3}}
Least common multiple of 3 and 2 is 6. Convert \frac{5}{3} and \frac{7}{2} to fractions with denominator 6.
\frac{\frac{10-21}{6}}{\frac{2\times 5+1}{5}-\frac{3\times 3+2}{3}}
Since \frac{10}{6} and \frac{21}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{11}{6}}{\frac{2\times 5+1}{5}-\frac{3\times 3+2}{3}}
Subtract 21 from 10 to get -11.
\frac{-\frac{11}{6}}{\frac{10+1}{5}-\frac{3\times 3+2}{3}}
Multiply 2 and 5 to get 10.
\frac{-\frac{11}{6}}{\frac{11}{5}-\frac{3\times 3+2}{3}}
Add 10 and 1 to get 11.
\frac{-\frac{11}{6}}{\frac{11}{5}-\frac{9+2}{3}}
Multiply 3 and 3 to get 9.
\frac{-\frac{11}{6}}{\frac{11}{5}-\frac{11}{3}}
Add 9 and 2 to get 11.
\frac{-\frac{11}{6}}{\frac{33}{15}-\frac{55}{15}}
Least common multiple of 5 and 3 is 15. Convert \frac{11}{5} and \frac{11}{3} to fractions with denominator 15.
\frac{-\frac{11}{6}}{\frac{33-55}{15}}
Since \frac{33}{15} and \frac{55}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{11}{6}}{-\frac{22}{15}}
Subtract 55 from 33 to get -22.
-\frac{11}{6}\left(-\frac{15}{22}\right)
Divide -\frac{11}{6} by -\frac{22}{15} by multiplying -\frac{11}{6} by the reciprocal of -\frac{22}{15}.
\frac{-11\left(-15\right)}{6\times 22}
Multiply -\frac{11}{6} times -\frac{15}{22} by multiplying numerator times numerator and denominator times denominator.
\frac{165}{132}
Do the multiplications in the fraction \frac{-11\left(-15\right)}{6\times 22}.
\frac{5}{4}
Reduce the fraction \frac{165}{132} to lowest terms by extracting and canceling out 33.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}