Evaluate
\frac{23}{10}=2.3
Factor
\frac{23}{2 \cdot 5} = 2\frac{3}{10} = 2.3
Share
Copied to clipboard
\frac{\frac{\left(1\times 2+1\right)\times 4}{2\left(1\times 4+1\right)}-\frac{2\times 2+1}{2}\times \frac{1}{4}}{\frac{1}{3}\times \frac{1}{2}+\frac{1}{6}\times \frac{1}{2}}
Divide \frac{1\times 2+1}{2} by \frac{1\times 4+1}{4} by multiplying \frac{1\times 2+1}{2} by the reciprocal of \frac{1\times 4+1}{4}.
\frac{\frac{2\left(1+2\right)}{1+4}-\frac{2\times 2+1}{2}\times \frac{1}{4}}{\frac{1}{3}\times \frac{1}{2}+\frac{1}{6}\times \frac{1}{2}}
Cancel out 2 in both numerator and denominator.
\frac{\frac{2\times 3}{1+4}-\frac{2\times 2+1}{2}\times \frac{1}{4}}{\frac{1}{3}\times \frac{1}{2}+\frac{1}{6}\times \frac{1}{2}}
Add 1 and 2 to get 3.
\frac{\frac{6}{1+4}-\frac{2\times 2+1}{2}\times \frac{1}{4}}{\frac{1}{3}\times \frac{1}{2}+\frac{1}{6}\times \frac{1}{2}}
Multiply 2 and 3 to get 6.
\frac{\frac{6}{5}-\frac{2\times 2+1}{2}\times \frac{1}{4}}{\frac{1}{3}\times \frac{1}{2}+\frac{1}{6}\times \frac{1}{2}}
Add 1 and 4 to get 5.
\frac{\frac{6}{5}-\frac{4+1}{2}\times \frac{1}{4}}{\frac{1}{3}\times \frac{1}{2}+\frac{1}{6}\times \frac{1}{2}}
Multiply 2 and 2 to get 4.
\frac{\frac{6}{5}-\frac{5}{2}\times \frac{1}{4}}{\frac{1}{3}\times \frac{1}{2}+\frac{1}{6}\times \frac{1}{2}}
Add 4 and 1 to get 5.
\frac{\frac{6}{5}-\frac{5\times 1}{2\times 4}}{\frac{1}{3}\times \frac{1}{2}+\frac{1}{6}\times \frac{1}{2}}
Multiply \frac{5}{2} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{6}{5}-\frac{5}{8}}{\frac{1}{3}\times \frac{1}{2}+\frac{1}{6}\times \frac{1}{2}}
Do the multiplications in the fraction \frac{5\times 1}{2\times 4}.
\frac{\frac{48}{40}-\frac{25}{40}}{\frac{1}{3}\times \frac{1}{2}+\frac{1}{6}\times \frac{1}{2}}
Least common multiple of 5 and 8 is 40. Convert \frac{6}{5} and \frac{5}{8} to fractions with denominator 40.
\frac{\frac{48-25}{40}}{\frac{1}{3}\times \frac{1}{2}+\frac{1}{6}\times \frac{1}{2}}
Since \frac{48}{40} and \frac{25}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{23}{40}}{\frac{1}{3}\times \frac{1}{2}+\frac{1}{6}\times \frac{1}{2}}
Subtract 25 from 48 to get 23.
\frac{\frac{23}{40}}{\frac{1\times 1}{3\times 2}+\frac{1}{6}\times \frac{1}{2}}
Multiply \frac{1}{3} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{23}{40}}{\frac{1}{6}+\frac{1}{6}\times \frac{1}{2}}
Do the multiplications in the fraction \frac{1\times 1}{3\times 2}.
\frac{\frac{23}{40}}{\frac{1}{6}+\frac{1\times 1}{6\times 2}}
Multiply \frac{1}{6} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{23}{40}}{\frac{1}{6}+\frac{1}{12}}
Do the multiplications in the fraction \frac{1\times 1}{6\times 2}.
\frac{\frac{23}{40}}{\frac{2}{12}+\frac{1}{12}}
Least common multiple of 6 and 12 is 12. Convert \frac{1}{6} and \frac{1}{12} to fractions with denominator 12.
\frac{\frac{23}{40}}{\frac{2+1}{12}}
Since \frac{2}{12} and \frac{1}{12} have the same denominator, add them by adding their numerators.
\frac{\frac{23}{40}}{\frac{3}{12}}
Add 2 and 1 to get 3.
\frac{\frac{23}{40}}{\frac{1}{4}}
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
\frac{23}{40}\times 4
Divide \frac{23}{40} by \frac{1}{4} by multiplying \frac{23}{40} by the reciprocal of \frac{1}{4}.
\frac{23\times 4}{40}
Express \frac{23}{40}\times 4 as a single fraction.
\frac{92}{40}
Multiply 23 and 4 to get 92.
\frac{23}{10}
Reduce the fraction \frac{92}{40} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}