Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1^{80}+i^{12}-3i^{26}+2i^{14}}{9+2i-1^{44}}
To multiply powers of the same base, add their exponents. Add 35 and 9 to get 44.
\frac{1+i^{12}-3i^{26}+2i^{14}}{9+2i-1^{44}}
Calculate 1 to the power of 80 and get 1.
\frac{1+1-3i^{26}+2i^{14}}{9+2i-1^{44}}
Calculate i to the power of 12 and get 1.
\frac{2-3i^{26}+2i^{14}}{9+2i-1^{44}}
Add 1 and 1 to get 2.
\frac{2-3\left(-1\right)+2i^{14}}{9+2i-1^{44}}
Calculate i to the power of 26 and get -1.
\frac{2-\left(-3\right)+2i^{14}}{9+2i-1^{44}}
Multiply 3 and -1 to get -3.
\frac{2+3+2i^{14}}{9+2i-1^{44}}
The opposite of -3 is 3.
\frac{5+2i^{14}}{9+2i-1^{44}}
Add 2 and 3 to get 5.
\frac{5+2\left(-1\right)}{9+2i-1^{44}}
Calculate i to the power of 14 and get -1.
\frac{5-2}{9+2i-1^{44}}
Multiply 2 and -1 to get -2.
\frac{3}{9+2i-1^{44}}
Subtract 2 from 5 to get 3.
\frac{3}{9+2i-1}
Calculate 1 to the power of 44 and get 1.
\frac{3}{8+2i}
Subtract 1 from 9+2i to get 8+2i.
\frac{3\left(8-2i\right)}{\left(8+2i\right)\left(8-2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 8-2i.
\frac{24-6i}{68}
Do the multiplications in \frac{3\left(8-2i\right)}{\left(8+2i\right)\left(8-2i\right)}.
\frac{6}{17}-\frac{3}{34}i
Divide 24-6i by 68 to get \frac{6}{17}-\frac{3}{34}i.
Re(\frac{1^{80}+i^{12}-3i^{26}+2i^{14}}{9+2i-1^{44}})
To multiply powers of the same base, add their exponents. Add 35 and 9 to get 44.
Re(\frac{1+i^{12}-3i^{26}+2i^{14}}{9+2i-1^{44}})
Calculate 1 to the power of 80 and get 1.
Re(\frac{1+1-3i^{26}+2i^{14}}{9+2i-1^{44}})
Calculate i to the power of 12 and get 1.
Re(\frac{2-3i^{26}+2i^{14}}{9+2i-1^{44}})
Add 1 and 1 to get 2.
Re(\frac{2-3\left(-1\right)+2i^{14}}{9+2i-1^{44}})
Calculate i to the power of 26 and get -1.
Re(\frac{2-\left(-3\right)+2i^{14}}{9+2i-1^{44}})
Multiply 3 and -1 to get -3.
Re(\frac{2+3+2i^{14}}{9+2i-1^{44}})
The opposite of -3 is 3.
Re(\frac{5+2i^{14}}{9+2i-1^{44}})
Add 2 and 3 to get 5.
Re(\frac{5+2\left(-1\right)}{9+2i-1^{44}})
Calculate i to the power of 14 and get -1.
Re(\frac{5-2}{9+2i-1^{44}})
Multiply 2 and -1 to get -2.
Re(\frac{3}{9+2i-1^{44}})
Subtract 2 from 5 to get 3.
Re(\frac{3}{9+2i-1})
Calculate 1 to the power of 44 and get 1.
Re(\frac{3}{8+2i})
Subtract 1 from 9+2i to get 8+2i.
Re(\frac{3\left(8-2i\right)}{\left(8+2i\right)\left(8-2i\right)})
Multiply both numerator and denominator of \frac{3}{8+2i} by the complex conjugate of the denominator, 8-2i.
Re(\frac{24-6i}{68})
Do the multiplications in \frac{3\left(8-2i\right)}{\left(8+2i\right)\left(8-2i\right)}.
Re(\frac{6}{17}-\frac{3}{34}i)
Divide 24-6i by 68 to get \frac{6}{17}-\frac{3}{34}i.
\frac{6}{17}
The real part of \frac{6}{17}-\frac{3}{34}i is \frac{6}{17}.