Solve for c (complex solution)
\left\{\begin{matrix}c=\frac{x+6}{2g_{65}o\left(2x+1\right)}\text{, }&x\neq -\frac{1}{2}\text{ and }g_{65}\neq 0\text{ and }o\neq 0\\c\in \mathrm{C}\text{, }&\left(g_{65}=0\text{ or }o=0\right)\text{ and }x=-6\end{matrix}\right.
Solve for g_65 (complex solution)
\left\{\begin{matrix}g_{65}=\frac{x+6}{2co\left(2x+1\right)}\text{, }&x\neq -\frac{1}{2}\text{ and }o\neq 0\text{ and }c\neq 0\\g_{65}\in \mathrm{C}\text{, }&\left(o=0\text{ or }c=0\right)\text{ and }x=-6\end{matrix}\right.
Solve for c
\left\{\begin{matrix}c=\frac{x+6}{2g_{65}o\left(2x+1\right)}\text{, }&x\neq -\frac{1}{2}\text{ and }g_{65}\neq 0\text{ and }o\neq 0\\c\in \mathrm{R}\text{, }&\left(g_{65}=0\text{ or }o=0\right)\text{ and }x=-6\end{matrix}\right.
Solve for g_65
\left\{\begin{matrix}g_{65}=\frac{x+6}{2co\left(2x+1\right)}\text{, }&x\neq -\frac{1}{2}\text{ and }o\neq 0\text{ and }c\neq 0\\g_{65}\in \mathrm{R}\text{, }&\left(o=0\text{ or }c=0\right)\text{ and }x=-6\end{matrix}\right.
Graph
Quiz
Linear Equation
5 problems similar to:
\frac { 1 / 2 x + 3 } { 2 x + 1 } = \operatorname { cog } 65
Share
Copied to clipboard
\frac{1}{2}x+3=cog_{65}\left(2x+1\right)
Multiply both sides of the equation by 2x+1.
\frac{1}{2}x+3=2cog_{65}x+cog_{65}
Use the distributive property to multiply cog_{65} by 2x+1.
2cog_{65}x+cog_{65}=\frac{1}{2}x+3
Swap sides so that all variable terms are on the left hand side.
\left(2og_{65}x+og_{65}\right)c=\frac{1}{2}x+3
Combine all terms containing c.
\left(2g_{65}ox+g_{65}o\right)c=\frac{x}{2}+3
The equation is in standard form.
\frac{\left(2g_{65}ox+g_{65}o\right)c}{2g_{65}ox+g_{65}o}=\frac{\frac{x}{2}+3}{2g_{65}ox+g_{65}o}
Divide both sides by 2og_{65}x+og_{65}.
c=\frac{\frac{x}{2}+3}{2g_{65}ox+g_{65}o}
Dividing by 2og_{65}x+og_{65} undoes the multiplication by 2og_{65}x+og_{65}.
c=\frac{x+6}{2g_{65}o\left(2x+1\right)}
Divide \frac{x}{2}+3 by 2og_{65}x+og_{65}.
\frac{1}{2}x+3=cog_{65}\left(2x+1\right)
Multiply both sides of the equation by 2x+1.
\frac{1}{2}x+3=2cog_{65}x+cog_{65}
Use the distributive property to multiply cog_{65} by 2x+1.
2cog_{65}x+cog_{65}=\frac{1}{2}x+3
Swap sides so that all variable terms are on the left hand side.
\left(2cox+co\right)g_{65}=\frac{1}{2}x+3
Combine all terms containing g_{65}.
\left(2cox+co\right)g_{65}=\frac{x}{2}+3
The equation is in standard form.
\frac{\left(2cox+co\right)g_{65}}{2cox+co}=\frac{\frac{x}{2}+3}{2cox+co}
Divide both sides by 2cox+co.
g_{65}=\frac{\frac{x}{2}+3}{2cox+co}
Dividing by 2cox+co undoes the multiplication by 2cox+co.
g_{65}=\frac{x+6}{2co\left(2x+1\right)}
Divide \frac{x}{2}+3 by 2cox+co.
\frac{1}{2}x+3=cog_{65}\left(2x+1\right)
Multiply both sides of the equation by 2x+1.
\frac{1}{2}x+3=2cog_{65}x+cog_{65}
Use the distributive property to multiply cog_{65} by 2x+1.
2cog_{65}x+cog_{65}=\frac{1}{2}x+3
Swap sides so that all variable terms are on the left hand side.
\left(2og_{65}x+og_{65}\right)c=\frac{1}{2}x+3
Combine all terms containing c.
\left(2g_{65}ox+g_{65}o\right)c=\frac{x}{2}+3
The equation is in standard form.
\frac{\left(2g_{65}ox+g_{65}o\right)c}{2g_{65}ox+g_{65}o}=\frac{\frac{x}{2}+3}{2g_{65}ox+g_{65}o}
Divide both sides by 2og_{65}x+og_{65}.
c=\frac{\frac{x}{2}+3}{2g_{65}ox+g_{65}o}
Dividing by 2og_{65}x+og_{65} undoes the multiplication by 2og_{65}x+og_{65}.
c=\frac{x+6}{2g_{65}o\left(2x+1\right)}
Divide \frac{x}{2}+3 by 2og_{65}x+og_{65}.
\frac{1}{2}x+3=cog_{65}\left(2x+1\right)
Multiply both sides of the equation by 2x+1.
\frac{1}{2}x+3=2cog_{65}x+cog_{65}
Use the distributive property to multiply cog_{65} by 2x+1.
2cog_{65}x+cog_{65}=\frac{1}{2}x+3
Swap sides so that all variable terms are on the left hand side.
\left(2cox+co\right)g_{65}=\frac{1}{2}x+3
Combine all terms containing g_{65}.
\left(2cox+co\right)g_{65}=\frac{x}{2}+3
The equation is in standard form.
\frac{\left(2cox+co\right)g_{65}}{2cox+co}=\frac{\frac{x}{2}+3}{2cox+co}
Divide both sides by 2cox+co.
g_{65}=\frac{\frac{x}{2}+3}{2cox+co}
Dividing by 2cox+co undoes the multiplication by 2cox+co.
g_{65}=\frac{x+6}{2co\left(2x+1\right)}
Divide \frac{x}{2}+3 by 2cox+co.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}