Solve for x
x=\frac{121884}{243781}\approx 0.499973337
Graph
Share
Copied to clipboard
\frac{1}{2}x+3=60945\left(-2x+1\right)
Variable x cannot be equal to \frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by -2x+1.
\frac{1}{2}x+3=-121890x+60945
Use the distributive property to multiply 60945 by -2x+1.
\frac{1}{2}x+3+121890x=60945
Add 121890x to both sides.
\frac{243781}{2}x+3=60945
Combine \frac{1}{2}x and 121890x to get \frac{243781}{2}x.
\frac{243781}{2}x=60945-3
Subtract 3 from both sides.
\frac{243781}{2}x=60942
Subtract 3 from 60945 to get 60942.
x=60942\times \frac{2}{243781}
Multiply both sides by \frac{2}{243781}, the reciprocal of \frac{243781}{2}.
x=\frac{121884}{243781}
Multiply 60942 and \frac{2}{243781} to get \frac{121884}{243781}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}