Solve for z
z=-i
Share
Copied to clipboard
1+z=-i\left(-z+1\right)
Variable z cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by -z+1.
1+z=iz-i
Use the distributive property to multiply -i by -z+1.
1+z-iz=-i
Subtract iz from both sides.
1+\left(1-i\right)z=-i
Combine z and -iz to get \left(1-i\right)z.
\left(1-i\right)z=-i-1
Subtract 1 from both sides.
\left(1-i\right)z=-1-i
The equation is in standard form.
\frac{\left(1-i\right)z}{1-i}=\frac{-1-i}{1-i}
Divide both sides by 1-i.
z=\frac{-1-i}{1-i}
Dividing by 1-i undoes the multiplication by 1-i.
z=-i
Divide -1-i by 1-i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}