Solve for q
q=\frac{2}{3}\approx 0.666666667
q = \frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
225\left(1+q^{2}\right)=\left(q+1\right)^{2}\times 117
Variable q cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by 225\left(q+1\right)^{2}, the least common multiple of \left(1+q\right)^{2},225.
225+225q^{2}=\left(q+1\right)^{2}\times 117
Use the distributive property to multiply 225 by 1+q^{2}.
225+225q^{2}=\left(q^{2}+2q+1\right)\times 117
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(q+1\right)^{2}.
225+225q^{2}=117q^{2}+234q+117
Use the distributive property to multiply q^{2}+2q+1 by 117.
225+225q^{2}-117q^{2}=234q+117
Subtract 117q^{2} from both sides.
225+108q^{2}=234q+117
Combine 225q^{2} and -117q^{2} to get 108q^{2}.
225+108q^{2}-234q=117
Subtract 234q from both sides.
225+108q^{2}-234q-117=0
Subtract 117 from both sides.
108+108q^{2}-234q=0
Subtract 117 from 225 to get 108.
108q^{2}-234q+108=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
q=\frac{-\left(-234\right)±\sqrt{\left(-234\right)^{2}-4\times 108\times 108}}{2\times 108}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 108 for a, -234 for b, and 108 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-\left(-234\right)±\sqrt{54756-4\times 108\times 108}}{2\times 108}
Square -234.
q=\frac{-\left(-234\right)±\sqrt{54756-432\times 108}}{2\times 108}
Multiply -4 times 108.
q=\frac{-\left(-234\right)±\sqrt{54756-46656}}{2\times 108}
Multiply -432 times 108.
q=\frac{-\left(-234\right)±\sqrt{8100}}{2\times 108}
Add 54756 to -46656.
q=\frac{-\left(-234\right)±90}{2\times 108}
Take the square root of 8100.
q=\frac{234±90}{2\times 108}
The opposite of -234 is 234.
q=\frac{234±90}{216}
Multiply 2 times 108.
q=\frac{324}{216}
Now solve the equation q=\frac{234±90}{216} when ± is plus. Add 234 to 90.
q=\frac{3}{2}
Reduce the fraction \frac{324}{216} to lowest terms by extracting and canceling out 108.
q=\frac{144}{216}
Now solve the equation q=\frac{234±90}{216} when ± is minus. Subtract 90 from 234.
q=\frac{2}{3}
Reduce the fraction \frac{144}{216} to lowest terms by extracting and canceling out 72.
q=\frac{3}{2} q=\frac{2}{3}
The equation is now solved.
225\left(1+q^{2}\right)=\left(q+1\right)^{2}\times 117
Variable q cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by 225\left(q+1\right)^{2}, the least common multiple of \left(1+q\right)^{2},225.
225+225q^{2}=\left(q+1\right)^{2}\times 117
Use the distributive property to multiply 225 by 1+q^{2}.
225+225q^{2}=\left(q^{2}+2q+1\right)\times 117
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(q+1\right)^{2}.
225+225q^{2}=117q^{2}+234q+117
Use the distributive property to multiply q^{2}+2q+1 by 117.
225+225q^{2}-117q^{2}=234q+117
Subtract 117q^{2} from both sides.
225+108q^{2}=234q+117
Combine 225q^{2} and -117q^{2} to get 108q^{2}.
225+108q^{2}-234q=117
Subtract 234q from both sides.
108q^{2}-234q=117-225
Subtract 225 from both sides.
108q^{2}-234q=-108
Subtract 225 from 117 to get -108.
\frac{108q^{2}-234q}{108}=-\frac{108}{108}
Divide both sides by 108.
q^{2}+\left(-\frac{234}{108}\right)q=-\frac{108}{108}
Dividing by 108 undoes the multiplication by 108.
q^{2}-\frac{13}{6}q=-\frac{108}{108}
Reduce the fraction \frac{-234}{108} to lowest terms by extracting and canceling out 18.
q^{2}-\frac{13}{6}q=-1
Divide -108 by 108.
q^{2}-\frac{13}{6}q+\left(-\frac{13}{12}\right)^{2}=-1+\left(-\frac{13}{12}\right)^{2}
Divide -\frac{13}{6}, the coefficient of the x term, by 2 to get -\frac{13}{12}. Then add the square of -\frac{13}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
q^{2}-\frac{13}{6}q+\frac{169}{144}=-1+\frac{169}{144}
Square -\frac{13}{12} by squaring both the numerator and the denominator of the fraction.
q^{2}-\frac{13}{6}q+\frac{169}{144}=\frac{25}{144}
Add -1 to \frac{169}{144}.
\left(q-\frac{13}{12}\right)^{2}=\frac{25}{144}
Factor q^{2}-\frac{13}{6}q+\frac{169}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q-\frac{13}{12}\right)^{2}}=\sqrt{\frac{25}{144}}
Take the square root of both sides of the equation.
q-\frac{13}{12}=\frac{5}{12} q-\frac{13}{12}=-\frac{5}{12}
Simplify.
q=\frac{3}{2} q=\frac{2}{3}
Add \frac{13}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}