Evaluate
\frac{1}{50}-\frac{57}{50}i=0.02-1.14i
Real Part
\frac{1}{50} = 0.02
Share
Copied to clipboard
\frac{-1+i}{-1}-\frac{7}{7-i}
Multiply both numerator and denominator of \frac{1+i}{i} by imaginary unit i.
1-i-\frac{7}{7-i}
Divide -1+i by -1 to get 1-i.
1-i-\frac{7\left(7+i\right)}{\left(7-i\right)\left(7+i\right)}
Multiply both numerator and denominator of \frac{7}{7-i} by the complex conjugate of the denominator, 7+i.
1-i-\frac{49+7i}{50}
Do the multiplications in \frac{7\left(7+i\right)}{\left(7-i\right)\left(7+i\right)}.
1-i+\left(-\frac{49}{50}-\frac{7}{50}i\right)
Divide 49+7i by 50 to get \frac{49}{50}+\frac{7}{50}i.
\frac{1}{50}-\frac{57}{50}i
Add 1-i and -\frac{49}{50}-\frac{7}{50}i to get \frac{1}{50}-\frac{57}{50}i.
Re(\frac{-1+i}{-1}-\frac{7}{7-i})
Multiply both numerator and denominator of \frac{1+i}{i} by imaginary unit i.
Re(1-i-\frac{7}{7-i})
Divide -1+i by -1 to get 1-i.
Re(1-i-\frac{7\left(7+i\right)}{\left(7-i\right)\left(7+i\right)})
Multiply both numerator and denominator of \frac{7}{7-i} by the complex conjugate of the denominator, 7+i.
Re(1-i-\frac{49+7i}{50})
Do the multiplications in \frac{7\left(7+i\right)}{\left(7-i\right)\left(7+i\right)}.
Re(1-i+\left(-\frac{49}{50}-\frac{7}{50}i\right))
Divide 49+7i by 50 to get \frac{49}{50}+\frac{7}{50}i.
Re(\frac{1}{50}-\frac{57}{50}i)
Add 1-i and -\frac{49}{50}-\frac{7}{50}i to get \frac{1}{50}-\frac{57}{50}i.
\frac{1}{50}
The real part of \frac{1}{50}-\frac{57}{50}i is \frac{1}{50}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}