Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-1+i}{-1}-\frac{7}{7-i}
Multiply both numerator and denominator of \frac{1+i}{i} by imaginary unit i.
1-i-\frac{7}{7-i}
Divide -1+i by -1 to get 1-i.
1-i-\frac{7\left(7+i\right)}{\left(7-i\right)\left(7+i\right)}
Multiply both numerator and denominator of \frac{7}{7-i} by the complex conjugate of the denominator, 7+i.
1-i-\frac{49+7i}{50}
Do the multiplications in \frac{7\left(7+i\right)}{\left(7-i\right)\left(7+i\right)}.
1-i+\left(-\frac{49}{50}-\frac{7}{50}i\right)
Divide 49+7i by 50 to get \frac{49}{50}+\frac{7}{50}i.
\frac{1}{50}-\frac{57}{50}i
Add 1-i and -\frac{49}{50}-\frac{7}{50}i to get \frac{1}{50}-\frac{57}{50}i.
Re(\frac{-1+i}{-1}-\frac{7}{7-i})
Multiply both numerator and denominator of \frac{1+i}{i} by imaginary unit i.
Re(1-i-\frac{7}{7-i})
Divide -1+i by -1 to get 1-i.
Re(1-i-\frac{7\left(7+i\right)}{\left(7-i\right)\left(7+i\right)})
Multiply both numerator and denominator of \frac{7}{7-i} by the complex conjugate of the denominator, 7+i.
Re(1-i-\frac{49+7i}{50})
Do the multiplications in \frac{7\left(7+i\right)}{\left(7-i\right)\left(7+i\right)}.
Re(1-i+\left(-\frac{49}{50}-\frac{7}{50}i\right))
Divide 49+7i by 50 to get \frac{49}{50}+\frac{7}{50}i.
Re(\frac{1}{50}-\frac{57}{50}i)
Add 1-i and -\frac{49}{50}-\frac{7}{50}i to get \frac{1}{50}-\frac{57}{50}i.
\frac{1}{50}
The real part of \frac{1}{50}-\frac{57}{50}i is \frac{1}{50}.