Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-1+i}{-1}-\frac{3}{4-i}
Multiply both numerator and denominator of \frac{1+i}{i} by imaginary unit i.
1-i-\frac{3}{4-i}
Divide -1+i by -1 to get 1-i.
1-i-\frac{3\left(4+i\right)}{\left(4-i\right)\left(4+i\right)}
Multiply both numerator and denominator of \frac{3}{4-i} by the complex conjugate of the denominator, 4+i.
1-i-\frac{12+3i}{17}
Do the multiplications in \frac{3\left(4+i\right)}{\left(4-i\right)\left(4+i\right)}.
1-i+\left(-\frac{12}{17}-\frac{3}{17}i\right)
Divide 12+3i by 17 to get \frac{12}{17}+\frac{3}{17}i.
\frac{5}{17}-\frac{20}{17}i
Add 1-i and -\frac{12}{17}-\frac{3}{17}i to get \frac{5}{17}-\frac{20}{17}i.
Re(\frac{-1+i}{-1}-\frac{3}{4-i})
Multiply both numerator and denominator of \frac{1+i}{i} by imaginary unit i.
Re(1-i-\frac{3}{4-i})
Divide -1+i by -1 to get 1-i.
Re(1-i-\frac{3\left(4+i\right)}{\left(4-i\right)\left(4+i\right)})
Multiply both numerator and denominator of \frac{3}{4-i} by the complex conjugate of the denominator, 4+i.
Re(1-i-\frac{12+3i}{17})
Do the multiplications in \frac{3\left(4+i\right)}{\left(4-i\right)\left(4+i\right)}.
Re(1-i+\left(-\frac{12}{17}-\frac{3}{17}i\right))
Divide 12+3i by 17 to get \frac{12}{17}+\frac{3}{17}i.
Re(\frac{5}{17}-\frac{20}{17}i)
Add 1-i and -\frac{12}{17}-\frac{3}{17}i to get \frac{5}{17}-\frac{20}{17}i.
\frac{5}{17}
The real part of \frac{5}{17}-\frac{20}{17}i is \frac{5}{17}.