Evaluate
\frac{5}{17}-\frac{20}{17}i\approx 0.294117647-1.176470588i
Real Part
\frac{5}{17} = 0.29411764705882354
Share
Copied to clipboard
\frac{-1+i}{-1}-\frac{3}{4-i}
Multiply both numerator and denominator of \frac{1+i}{i} by imaginary unit i.
1-i-\frac{3}{4-i}
Divide -1+i by -1 to get 1-i.
1-i-\frac{3\left(4+i\right)}{\left(4-i\right)\left(4+i\right)}
Multiply both numerator and denominator of \frac{3}{4-i} by the complex conjugate of the denominator, 4+i.
1-i-\frac{12+3i}{17}
Do the multiplications in \frac{3\left(4+i\right)}{\left(4-i\right)\left(4+i\right)}.
1-i+\left(-\frac{12}{17}-\frac{3}{17}i\right)
Divide 12+3i by 17 to get \frac{12}{17}+\frac{3}{17}i.
\frac{5}{17}-\frac{20}{17}i
Add 1-i and -\frac{12}{17}-\frac{3}{17}i to get \frac{5}{17}-\frac{20}{17}i.
Re(\frac{-1+i}{-1}-\frac{3}{4-i})
Multiply both numerator and denominator of \frac{1+i}{i} by imaginary unit i.
Re(1-i-\frac{3}{4-i})
Divide -1+i by -1 to get 1-i.
Re(1-i-\frac{3\left(4+i\right)}{\left(4-i\right)\left(4+i\right)})
Multiply both numerator and denominator of \frac{3}{4-i} by the complex conjugate of the denominator, 4+i.
Re(1-i-\frac{12+3i}{17})
Do the multiplications in \frac{3\left(4+i\right)}{\left(4-i\right)\left(4+i\right)}.
Re(1-i+\left(-\frac{12}{17}-\frac{3}{17}i\right))
Divide 12+3i by 17 to get \frac{12}{17}+\frac{3}{17}i.
Re(\frac{5}{17}-\frac{20}{17}i)
Add 1-i and -\frac{12}{17}-\frac{3}{17}i to get \frac{5}{17}-\frac{20}{17}i.
\frac{5}{17}
The real part of \frac{5}{17}-\frac{20}{17}i is \frac{5}{17}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}