Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-1+i}{-3}-\frac{2}{1+i}
Multiply both numerator and denominator of \frac{1+i}{3i} by imaginary unit i.
\frac{1}{3}-\frac{1}{3}i-\frac{2}{1+i}
Divide -1+i by -3 to get \frac{1}{3}-\frac{1}{3}i.
\frac{1}{3}-\frac{1}{3}i-\frac{2\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator of \frac{2}{1+i} by the complex conjugate of the denominator, 1-i.
\frac{1}{3}-\frac{1}{3}i-\frac{2-2i}{2}
Do the multiplications in \frac{2\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
\frac{1}{3}-\frac{1}{3}i+\left(-1+i\right)
Divide 2-2i by 2 to get 1-i.
-\frac{2}{3}+\frac{2}{3}i
Add \frac{1}{3}-\frac{1}{3}i and -1+i to get -\frac{2}{3}+\frac{2}{3}i.
Re(\frac{-1+i}{-3}-\frac{2}{1+i})
Multiply both numerator and denominator of \frac{1+i}{3i} by imaginary unit i.
Re(\frac{1}{3}-\frac{1}{3}i-\frac{2}{1+i})
Divide -1+i by -3 to get \frac{1}{3}-\frac{1}{3}i.
Re(\frac{1}{3}-\frac{1}{3}i-\frac{2\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{2}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{1}{3}-\frac{1}{3}i-\frac{2-2i}{2})
Do the multiplications in \frac{2\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(\frac{1}{3}-\frac{1}{3}i+\left(-1+i\right))
Divide 2-2i by 2 to get 1-i.
Re(-\frac{2}{3}+\frac{2}{3}i)
Add \frac{1}{3}-\frac{1}{3}i and -1+i to get -\frac{2}{3}+\frac{2}{3}i.
-\frac{2}{3}
The real part of -\frac{2}{3}+\frac{2}{3}i is -\frac{2}{3}.