Evaluate
\frac{1}{13}+\frac{5}{13}i\approx 0.076923077+0.384615385i
Real Part
\frac{1}{13} = 0.07692307692307693
Share
Copied to clipboard
\frac{\left(1+i\right)\left(3+2i\right)}{\left(3-2i\right)\left(3+2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3+2i.
\frac{\left(1+i\right)\left(3+2i\right)}{3^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+i\right)\left(3+2i\right)}{13}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 3+1\times \left(2i\right)+3i+2i^{2}}{13}
Multiply complex numbers 1+i and 3+2i like you multiply binomials.
\frac{1\times 3+1\times \left(2i\right)+3i+2\left(-1\right)}{13}
By definition, i^{2} is -1.
\frac{3+2i+3i-2}{13}
Do the multiplications in 1\times 3+1\times \left(2i\right)+3i+2\left(-1\right).
\frac{3-2+\left(2+3\right)i}{13}
Combine the real and imaginary parts in 3+2i+3i-2.
\frac{1+5i}{13}
Do the additions in 3-2+\left(2+3\right)i.
\frac{1}{13}+\frac{5}{13}i
Divide 1+5i by 13 to get \frac{1}{13}+\frac{5}{13}i.
Re(\frac{\left(1+i\right)\left(3+2i\right)}{\left(3-2i\right)\left(3+2i\right)})
Multiply both numerator and denominator of \frac{1+i}{3-2i} by the complex conjugate of the denominator, 3+2i.
Re(\frac{\left(1+i\right)\left(3+2i\right)}{3^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1+i\right)\left(3+2i\right)}{13})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1\times 3+1\times \left(2i\right)+3i+2i^{2}}{13})
Multiply complex numbers 1+i and 3+2i like you multiply binomials.
Re(\frac{1\times 3+1\times \left(2i\right)+3i+2\left(-1\right)}{13})
By definition, i^{2} is -1.
Re(\frac{3+2i+3i-2}{13})
Do the multiplications in 1\times 3+1\times \left(2i\right)+3i+2\left(-1\right).
Re(\frac{3-2+\left(2+3\right)i}{13})
Combine the real and imaginary parts in 3+2i+3i-2.
Re(\frac{1+5i}{13})
Do the additions in 3-2+\left(2+3\right)i.
Re(\frac{1}{13}+\frac{5}{13}i)
Divide 1+5i by 13 to get \frac{1}{13}+\frac{5}{13}i.
\frac{1}{13}
The real part of \frac{1}{13}+\frac{5}{13}i is \frac{1}{13}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}