Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+i\right)\left(3+2i\right)}{\left(3-2i\right)\left(3+2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3+2i.
\frac{\left(1+i\right)\left(3+2i\right)}{3^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+i\right)\left(3+2i\right)}{13}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 3+1\times \left(2i\right)+3i+2i^{2}}{13}
Multiply complex numbers 1+i and 3+2i like you multiply binomials.
\frac{1\times 3+1\times \left(2i\right)+3i+2\left(-1\right)}{13}
By definition, i^{2} is -1.
\frac{3+2i+3i-2}{13}
Do the multiplications in 1\times 3+1\times \left(2i\right)+3i+2\left(-1\right).
\frac{3-2+\left(2+3\right)i}{13}
Combine the real and imaginary parts in 3+2i+3i-2.
\frac{1+5i}{13}
Do the additions in 3-2+\left(2+3\right)i.
\frac{1}{13}+\frac{5}{13}i
Divide 1+5i by 13 to get \frac{1}{13}+\frac{5}{13}i.
Re(\frac{\left(1+i\right)\left(3+2i\right)}{\left(3-2i\right)\left(3+2i\right)})
Multiply both numerator and denominator of \frac{1+i}{3-2i} by the complex conjugate of the denominator, 3+2i.
Re(\frac{\left(1+i\right)\left(3+2i\right)}{3^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1+i\right)\left(3+2i\right)}{13})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1\times 3+1\times \left(2i\right)+3i+2i^{2}}{13})
Multiply complex numbers 1+i and 3+2i like you multiply binomials.
Re(\frac{1\times 3+1\times \left(2i\right)+3i+2\left(-1\right)}{13})
By definition, i^{2} is -1.
Re(\frac{3+2i+3i-2}{13})
Do the multiplications in 1\times 3+1\times \left(2i\right)+3i+2\left(-1\right).
Re(\frac{3-2+\left(2+3\right)i}{13})
Combine the real and imaginary parts in 3+2i+3i-2.
Re(\frac{1+5i}{13})
Do the additions in 3-2+\left(2+3\right)i.
Re(\frac{1}{13}+\frac{5}{13}i)
Divide 1+5i by 13 to get \frac{1}{13}+\frac{5}{13}i.
\frac{1}{13}
The real part of \frac{1}{13}+\frac{5}{13}i is \frac{1}{13}.