Evaluate
\frac{21}{5}+\frac{18}{5}i=4.2+3.6i
Real Part
\frac{21}{5} = 4\frac{1}{5} = 4.2
Share
Copied to clipboard
\frac{\left(1+i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}+\left(2-i\right)\left(1+2i\right)
Multiply both numerator and denominator of \frac{1+i}{2-i} by the complex conjugate of the denominator, 2+i.
\frac{\left(1+i\right)\left(2+i\right)}{2^{2}-i^{2}}+\left(2-i\right)\left(1+2i\right)
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+i\right)\left(2+i\right)}{5}+\left(2-i\right)\left(1+2i\right)
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 2+i+2i+i^{2}}{5}+\left(2-i\right)\left(1+2i\right)
Multiply complex numbers 1+i and 2+i like you multiply binomials.
\frac{1\times 2+i+2i-1}{5}+\left(2-i\right)\left(1+2i\right)
By definition, i^{2} is -1.
\frac{2+i+2i-1}{5}+\left(2-i\right)\left(1+2i\right)
Do the multiplications in 1\times 2+i+2i-1.
\frac{2-1+\left(1+2\right)i}{5}+\left(2-i\right)\left(1+2i\right)
Combine the real and imaginary parts in 2+i+2i-1.
\frac{1+3i}{5}+\left(2-i\right)\left(1+2i\right)
Do the additions in 2-1+\left(1+2\right)i.
\frac{1}{5}+\frac{3}{5}i+\left(2-i\right)\left(1+2i\right)
Divide 1+3i by 5 to get \frac{1}{5}+\frac{3}{5}i.
\frac{1}{5}+\frac{3}{5}i+2\times 1+2\times \left(2i\right)-i-2i^{2}
Multiply complex numbers 2-i and 1+2i like you multiply binomials.
\frac{1}{5}+\frac{3}{5}i+2\times 1+2\times \left(2i\right)-i-2\left(-1\right)
By definition, i^{2} is -1.
\frac{1}{5}+\frac{3}{5}i+2+4i-i+2
Do the multiplications in 2\times 1+2\times \left(2i\right)-i-2\left(-1\right).
\frac{1}{5}+\frac{3}{5}i+2+2+\left(4-1\right)i
Combine the real and imaginary parts in 2+4i-i+2.
\frac{1}{5}+\frac{3}{5}i+\left(4+3i\right)
Do the additions in 2+2+\left(4-1\right)i.
\frac{1}{5}+4+\left(\frac{3}{5}+3\right)i
Combine the real and imaginary parts.
\frac{21}{5}+\frac{18}{5}i
Do the additions.
Re(\frac{\left(1+i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}+\left(2-i\right)\left(1+2i\right))
Multiply both numerator and denominator of \frac{1+i}{2-i} by the complex conjugate of the denominator, 2+i.
Re(\frac{\left(1+i\right)\left(2+i\right)}{2^{2}-i^{2}}+\left(2-i\right)\left(1+2i\right))
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1+i\right)\left(2+i\right)}{5}+\left(2-i\right)\left(1+2i\right))
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1\times 2+i+2i+i^{2}}{5}+\left(2-i\right)\left(1+2i\right))
Multiply complex numbers 1+i and 2+i like you multiply binomials.
Re(\frac{1\times 2+i+2i-1}{5}+\left(2-i\right)\left(1+2i\right))
By definition, i^{2} is -1.
Re(\frac{2+i+2i-1}{5}+\left(2-i\right)\left(1+2i\right))
Do the multiplications in 1\times 2+i+2i-1.
Re(\frac{2-1+\left(1+2\right)i}{5}+\left(2-i\right)\left(1+2i\right))
Combine the real and imaginary parts in 2+i+2i-1.
Re(\frac{1+3i}{5}+\left(2-i\right)\left(1+2i\right))
Do the additions in 2-1+\left(1+2\right)i.
Re(\frac{1}{5}+\frac{3}{5}i+\left(2-i\right)\left(1+2i\right))
Divide 1+3i by 5 to get \frac{1}{5}+\frac{3}{5}i.
Re(\frac{1}{5}+\frac{3}{5}i+2\times 1+2\times \left(2i\right)-i-2i^{2})
Multiply complex numbers 2-i and 1+2i like you multiply binomials.
Re(\frac{1}{5}+\frac{3}{5}i+2\times 1+2\times \left(2i\right)-i-2\left(-1\right))
By definition, i^{2} is -1.
Re(\frac{1}{5}+\frac{3}{5}i+2+4i-i+2)
Do the multiplications in 2\times 1+2\times \left(2i\right)-i-2\left(-1\right).
Re(\frac{1}{5}+\frac{3}{5}i+2+2+\left(4-1\right)i)
Combine the real and imaginary parts in 2+4i-i+2.
Re(\frac{1}{5}+\frac{3}{5}i+\left(4+3i\right))
Do the additions in 2+2+\left(4-1\right)i.
Re(\frac{1}{5}+4+\left(\frac{3}{5}+3\right)i)
Combine the real and imaginary parts in \frac{1}{5}+\frac{3}{5}i+4+3i.
Re(\frac{21}{5}+\frac{18}{5}i)
Do the additions in \frac{1}{5}+4+\left(\frac{3}{5}+3\right)i.
\frac{21}{5}
The real part of \frac{21}{5}+\frac{18}{5}i is \frac{21}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}