Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+i\right)\left(2-2i\right)}{\left(2+2i\right)\left(2-2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2-2i.
\frac{\left(1+i\right)\left(2-2i\right)}{2^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+i\right)\left(2-2i\right)}{8}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 2+1\times \left(-2i\right)+2i-2i^{2}}{8}
Multiply complex numbers 1+i and 2-2i like you multiply binomials.
\frac{1\times 2+1\times \left(-2i\right)+2i-2\left(-1\right)}{8}
By definition, i^{2} is -1.
\frac{2-2i+2i+2}{8}
Do the multiplications in 1\times 2+1\times \left(-2i\right)+2i-2\left(-1\right).
\frac{2+2+\left(-2+2\right)i}{8}
Combine the real and imaginary parts in 2-2i+2i+2.
\frac{4}{8}
Do the additions in 2+2+\left(-2+2\right)i.
\frac{1}{2}
Divide 4 by 8 to get \frac{1}{2}.
Re(\frac{\left(1+i\right)\left(2-2i\right)}{\left(2+2i\right)\left(2-2i\right)})
Multiply both numerator and denominator of \frac{1+i}{2+2i} by the complex conjugate of the denominator, 2-2i.
Re(\frac{\left(1+i\right)\left(2-2i\right)}{2^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1+i\right)\left(2-2i\right)}{8})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1\times 2+1\times \left(-2i\right)+2i-2i^{2}}{8})
Multiply complex numbers 1+i and 2-2i like you multiply binomials.
Re(\frac{1\times 2+1\times \left(-2i\right)+2i-2\left(-1\right)}{8})
By definition, i^{2} is -1.
Re(\frac{2-2i+2i+2}{8})
Do the multiplications in 1\times 2+1\times \left(-2i\right)+2i-2\left(-1\right).
Re(\frac{2+2+\left(-2+2\right)i}{8})
Combine the real and imaginary parts in 2-2i+2i+2.
Re(\frac{4}{8})
Do the additions in 2+2+\left(-2+2\right)i.
Re(\frac{1}{2})
Divide 4 by 8 to get \frac{1}{2}.
\frac{1}{2}
The real part of \frac{1}{2} is \frac{1}{2}.