Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+i\right)i}{-2i^{2}}
Multiply both numerator and denominator by imaginary unit i.
\frac{\left(1+i\right)i}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{i+i^{2}}{2}
Multiply 1+i times i.
\frac{i-1}{2}
By definition, i^{2} is -1.
\frac{-1+i}{2}
Reorder the terms.
-\frac{1}{2}+\frac{1}{2}i
Divide -1+i by 2 to get -\frac{1}{2}+\frac{1}{2}i.
Re(\frac{\left(1+i\right)i}{-2i^{2}})
Multiply both numerator and denominator of \frac{1+i}{-2i} by imaginary unit i.
Re(\frac{\left(1+i\right)i}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{i+i^{2}}{2})
Multiply 1+i times i.
Re(\frac{i-1}{2})
By definition, i^{2} is -1.
Re(\frac{-1+i}{2})
Reorder the terms.
Re(-\frac{1}{2}+\frac{1}{2}i)
Divide -1+i by 2 to get -\frac{1}{2}+\frac{1}{2}i.
-\frac{1}{2}
The real part of -\frac{1}{2}+\frac{1}{2}i is -\frac{1}{2}.