Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+i\right)\left(-1-5i\right)}{\left(-1+5i\right)\left(-1-5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -1-5i.
\frac{\left(1+i\right)\left(-1-5i\right)}{\left(-1\right)^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+i\right)\left(-1-5i\right)}{26}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\left(-1\right)+1\times \left(-5i\right)-i-5i^{2}}{26}
Multiply complex numbers 1+i and -1-5i like you multiply binomials.
\frac{1\left(-1\right)+1\times \left(-5i\right)-i-5\left(-1\right)}{26}
By definition, i^{2} is -1.
\frac{-1-5i-i+5}{26}
Do the multiplications in 1\left(-1\right)+1\times \left(-5i\right)-i-5\left(-1\right).
\frac{-1+5+\left(-5-1\right)i}{26}
Combine the real and imaginary parts in -1-5i-i+5.
\frac{4-6i}{26}
Do the additions in -1+5+\left(-5-1\right)i.
\frac{2}{13}-\frac{3}{13}i
Divide 4-6i by 26 to get \frac{2}{13}-\frac{3}{13}i.
Re(\frac{\left(1+i\right)\left(-1-5i\right)}{\left(-1+5i\right)\left(-1-5i\right)})
Multiply both numerator and denominator of \frac{1+i}{-1+5i} by the complex conjugate of the denominator, -1-5i.
Re(\frac{\left(1+i\right)\left(-1-5i\right)}{\left(-1\right)^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1+i\right)\left(-1-5i\right)}{26})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1\left(-1\right)+1\times \left(-5i\right)-i-5i^{2}}{26})
Multiply complex numbers 1+i and -1-5i like you multiply binomials.
Re(\frac{1\left(-1\right)+1\times \left(-5i\right)-i-5\left(-1\right)}{26})
By definition, i^{2} is -1.
Re(\frac{-1-5i-i+5}{26})
Do the multiplications in 1\left(-1\right)+1\times \left(-5i\right)-i-5\left(-1\right).
Re(\frac{-1+5+\left(-5-1\right)i}{26})
Combine the real and imaginary parts in -1-5i-i+5.
Re(\frac{4-6i}{26})
Do the additions in -1+5+\left(-5-1\right)i.
Re(\frac{2}{13}-\frac{3}{13}i)
Divide 4-6i by 26 to get \frac{2}{13}-\frac{3}{13}i.
\frac{2}{13}
The real part of \frac{2}{13}-\frac{3}{13}i is \frac{2}{13}.