Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1+i}{2i}
Calculate the square root of -4 and get 2i.
\frac{\left(1+i\right)i}{2i^{2}}
Multiply both numerator and denominator by imaginary unit i.
\frac{\left(1+i\right)i}{-2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{i+i^{2}}{-2}
Multiply 1+i times i.
\frac{i-1}{-2}
By definition, i^{2} is -1.
\frac{-1+i}{-2}
Reorder the terms.
\frac{1}{2}-\frac{1}{2}i
Divide -1+i by -2 to get \frac{1}{2}-\frac{1}{2}i.
Re(\frac{1+i}{2i})
Calculate the square root of -4 and get 2i.
Re(\frac{\left(1+i\right)i}{2i^{2}})
Multiply both numerator and denominator of \frac{1+i}{2i} by imaginary unit i.
Re(\frac{\left(1+i\right)i}{-2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{i+i^{2}}{-2})
Multiply 1+i times i.
Re(\frac{i-1}{-2})
By definition, i^{2} is -1.
Re(\frac{-1+i}{-2})
Reorder the terms.
Re(\frac{1}{2}-\frac{1}{2}i)
Divide -1+i by -2 to get \frac{1}{2}-\frac{1}{2}i.
\frac{1}{2}
The real part of \frac{1}{2}-\frac{1}{2}i is \frac{1}{2}.