Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+3i\right)\left(7-7i\right)}{\left(7+7i\right)\left(7-7i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7-7i.
\frac{\left(1+3i\right)\left(7-7i\right)}{7^{2}-7^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+3i\right)\left(7-7i\right)}{98}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 7+1\times \left(-7i\right)+3i\times 7+3\left(-7\right)i^{2}}{98}
Multiply complex numbers 1+3i and 7-7i like you multiply binomials.
\frac{1\times 7+1\times \left(-7i\right)+3i\times 7+3\left(-7\right)\left(-1\right)}{98}
By definition, i^{2} is -1.
\frac{7-7i+21i+21}{98}
Do the multiplications in 1\times 7+1\times \left(-7i\right)+3i\times 7+3\left(-7\right)\left(-1\right).
\frac{7+21+\left(-7+21\right)i}{98}
Combine the real and imaginary parts in 7-7i+21i+21.
\frac{28+14i}{98}
Do the additions in 7+21+\left(-7+21\right)i.
\frac{2}{7}+\frac{1}{7}i
Divide 28+14i by 98 to get \frac{2}{7}+\frac{1}{7}i.
Re(\frac{\left(1+3i\right)\left(7-7i\right)}{\left(7+7i\right)\left(7-7i\right)})
Multiply both numerator and denominator of \frac{1+3i}{7+7i} by the complex conjugate of the denominator, 7-7i.
Re(\frac{\left(1+3i\right)\left(7-7i\right)}{7^{2}-7^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1+3i\right)\left(7-7i\right)}{98})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1\times 7+1\times \left(-7i\right)+3i\times 7+3\left(-7\right)i^{2}}{98})
Multiply complex numbers 1+3i and 7-7i like you multiply binomials.
Re(\frac{1\times 7+1\times \left(-7i\right)+3i\times 7+3\left(-7\right)\left(-1\right)}{98})
By definition, i^{2} is -1.
Re(\frac{7-7i+21i+21}{98})
Do the multiplications in 1\times 7+1\times \left(-7i\right)+3i\times 7+3\left(-7\right)\left(-1\right).
Re(\frac{7+21+\left(-7+21\right)i}{98})
Combine the real and imaginary parts in 7-7i+21i+21.
Re(\frac{28+14i}{98})
Do the additions in 7+21+\left(-7+21\right)i.
Re(\frac{2}{7}+\frac{1}{7}i)
Divide 28+14i by 98 to get \frac{2}{7}+\frac{1}{7}i.
\frac{2}{7}
The real part of \frac{2}{7}+\frac{1}{7}i is \frac{2}{7}.