Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{1}{25}+\frac{3}{25}i\right)z+\frac{2-3i}{1+2i}=-\frac{7i}{5}
Divide 1+3i by 25 to get \frac{1}{25}+\frac{3}{25}i.
\left(\frac{1}{25}+\frac{3}{25}i\right)z+\frac{\left(2-3i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}=-\frac{7i}{5}
Multiply both numerator and denominator of \frac{2-3i}{1+2i} by the complex conjugate of the denominator, 1-2i.
\left(\frac{1}{25}+\frac{3}{25}i\right)z+\frac{-4-7i}{5}=-\frac{7i}{5}
Do the multiplications in \frac{\left(2-3i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}.
\left(\frac{1}{25}+\frac{3}{25}i\right)z+\left(-\frac{4}{5}-\frac{7}{5}i\right)=-\frac{7i}{5}
Divide -4-7i by 5 to get -\frac{4}{5}-\frac{7}{5}i.
\left(\frac{1}{25}+\frac{3}{25}i\right)z+\left(-\frac{4}{5}-\frac{7}{5}i\right)=-\frac{7}{5}i
Divide 7i by 5 to get \frac{7}{5}i.
\left(\frac{1}{25}+\frac{3}{25}i\right)z=-\frac{7}{5}i+\left(\frac{4}{5}+\frac{7}{5}i\right)
Add \frac{4}{5}+\frac{7}{5}i to both sides.
\left(\frac{1}{25}+\frac{3}{25}i\right)z=\frac{4}{5}
Add -\frac{7}{5}i and \frac{4}{5}+\frac{7}{5}i to get \frac{4}{5}.
z=\frac{\frac{4}{5}}{\frac{1}{25}+\frac{3}{25}i}
Divide both sides by \frac{1}{25}+\frac{3}{25}i.
z=\frac{\frac{4}{5}\left(\frac{1}{25}-\frac{3}{25}i\right)}{\left(\frac{1}{25}+\frac{3}{25}i\right)\left(\frac{1}{25}-\frac{3}{25}i\right)}
Multiply both numerator and denominator of \frac{\frac{4}{5}}{\frac{1}{25}+\frac{3}{25}i} by the complex conjugate of the denominator, \frac{1}{25}-\frac{3}{25}i.
z=\frac{\frac{4}{125}-\frac{12}{125}i}{\frac{2}{125}}
Do the multiplications in \frac{\frac{4}{5}\left(\frac{1}{25}-\frac{3}{25}i\right)}{\left(\frac{1}{25}+\frac{3}{25}i\right)\left(\frac{1}{25}-\frac{3}{25}i\right)}.
z=2-6i
Divide \frac{4}{125}-\frac{12}{125}i by \frac{2}{125} to get 2-6i.