Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(1+2x\right)\left(2x+1\right)}{\left(-2x+1\right)\left(2x+1\right)}-\frac{\left(1-2x\right)\left(-2x+1\right)}{\left(-2x+1\right)\left(2x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-2x and 1+2x is \left(-2x+1\right)\left(2x+1\right). Multiply \frac{1+2x}{1-2x} times \frac{2x+1}{2x+1}. Multiply \frac{1-2x}{1+2x} times \frac{-2x+1}{-2x+1}.
\frac{\left(1+2x\right)\left(2x+1\right)-\left(1-2x\right)\left(-2x+1\right)}{\left(-2x+1\right)\left(2x+1\right)}
Since \frac{\left(1+2x\right)\left(2x+1\right)}{\left(-2x+1\right)\left(2x+1\right)} and \frac{\left(1-2x\right)\left(-2x+1\right)}{\left(-2x+1\right)\left(2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{1+2x+4x^{2}+2x+2x-1-4x^{2}+2x}{\left(-2x+1\right)\left(2x+1\right)}
Do the multiplications in \left(1+2x\right)\left(2x+1\right)-\left(1-2x\right)\left(-2x+1\right).
\frac{8x}{\left(-2x+1\right)\left(2x+1\right)}
Combine like terms in 1+2x+4x^{2}+2x+2x-1-4x^{2}+2x.
\frac{8x}{-4x^{2}+1}
Expand \left(-2x+1\right)\left(2x+1\right).
\frac{\left(1+2x\right)\left(2x+1\right)}{\left(-2x+1\right)\left(2x+1\right)}-\frac{\left(1-2x\right)\left(-2x+1\right)}{\left(-2x+1\right)\left(2x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-2x and 1+2x is \left(-2x+1\right)\left(2x+1\right). Multiply \frac{1+2x}{1-2x} times \frac{2x+1}{2x+1}. Multiply \frac{1-2x}{1+2x} times \frac{-2x+1}{-2x+1}.
\frac{\left(1+2x\right)\left(2x+1\right)-\left(1-2x\right)\left(-2x+1\right)}{\left(-2x+1\right)\left(2x+1\right)}
Since \frac{\left(1+2x\right)\left(2x+1\right)}{\left(-2x+1\right)\left(2x+1\right)} and \frac{\left(1-2x\right)\left(-2x+1\right)}{\left(-2x+1\right)\left(2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{1+2x+4x^{2}+2x+2x-1-4x^{2}+2x}{\left(-2x+1\right)\left(2x+1\right)}
Do the multiplications in \left(1+2x\right)\left(2x+1\right)-\left(1-2x\right)\left(-2x+1\right).
\frac{8x}{\left(-2x+1\right)\left(2x+1\right)}
Combine like terms in 1+2x+4x^{2}+2x+2x-1-4x^{2}+2x.
\frac{8x}{-4x^{2}+1}
Expand \left(-2x+1\right)\left(2x+1\right).