Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+2i\right)\left(7-7i\right)}{\left(7+7i\right)\left(7-7i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7-7i.
\frac{\left(1+2i\right)\left(7-7i\right)}{7^{2}-7^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+2i\right)\left(7-7i\right)}{98}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 7+1\times \left(-7i\right)+2i\times 7+2\left(-7\right)i^{2}}{98}
Multiply complex numbers 1+2i and 7-7i like you multiply binomials.
\frac{1\times 7+1\times \left(-7i\right)+2i\times 7+2\left(-7\right)\left(-1\right)}{98}
By definition, i^{2} is -1.
\frac{7-7i+14i+14}{98}
Do the multiplications in 1\times 7+1\times \left(-7i\right)+2i\times 7+2\left(-7\right)\left(-1\right).
\frac{7+14+\left(-7+14\right)i}{98}
Combine the real and imaginary parts in 7-7i+14i+14.
\frac{21+7i}{98}
Do the additions in 7+14+\left(-7+14\right)i.
\frac{3}{14}+\frac{1}{14}i
Divide 21+7i by 98 to get \frac{3}{14}+\frac{1}{14}i.
Re(\frac{\left(1+2i\right)\left(7-7i\right)}{\left(7+7i\right)\left(7-7i\right)})
Multiply both numerator and denominator of \frac{1+2i}{7+7i} by the complex conjugate of the denominator, 7-7i.
Re(\frac{\left(1+2i\right)\left(7-7i\right)}{7^{2}-7^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1+2i\right)\left(7-7i\right)}{98})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1\times 7+1\times \left(-7i\right)+2i\times 7+2\left(-7\right)i^{2}}{98})
Multiply complex numbers 1+2i and 7-7i like you multiply binomials.
Re(\frac{1\times 7+1\times \left(-7i\right)+2i\times 7+2\left(-7\right)\left(-1\right)}{98})
By definition, i^{2} is -1.
Re(\frac{7-7i+14i+14}{98})
Do the multiplications in 1\times 7+1\times \left(-7i\right)+2i\times 7+2\left(-7\right)\left(-1\right).
Re(\frac{7+14+\left(-7+14\right)i}{98})
Combine the real and imaginary parts in 7-7i+14i+14.
Re(\frac{21+7i}{98})
Do the additions in 7+14+\left(-7+14\right)i.
Re(\frac{3}{14}+\frac{1}{14}i)
Divide 21+7i by 98 to get \frac{3}{14}+\frac{1}{14}i.
\frac{3}{14}
The real part of \frac{3}{14}+\frac{1}{14}i is \frac{3}{14}.