Evaluate
\frac{3}{14}+\frac{1}{14}i\approx 0.214285714+0.071428571i
Real Part
\frac{3}{14} = 0.21428571428571427
Share
Copied to clipboard
\frac{\left(1+2i\right)\left(7-7i\right)}{\left(7+7i\right)\left(7-7i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7-7i.
\frac{\left(1+2i\right)\left(7-7i\right)}{7^{2}-7^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+2i\right)\left(7-7i\right)}{98}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 7+1\times \left(-7i\right)+2i\times 7+2\left(-7\right)i^{2}}{98}
Multiply complex numbers 1+2i and 7-7i like you multiply binomials.
\frac{1\times 7+1\times \left(-7i\right)+2i\times 7+2\left(-7\right)\left(-1\right)}{98}
By definition, i^{2} is -1.
\frac{7-7i+14i+14}{98}
Do the multiplications in 1\times 7+1\times \left(-7i\right)+2i\times 7+2\left(-7\right)\left(-1\right).
\frac{7+14+\left(-7+14\right)i}{98}
Combine the real and imaginary parts in 7-7i+14i+14.
\frac{21+7i}{98}
Do the additions in 7+14+\left(-7+14\right)i.
\frac{3}{14}+\frac{1}{14}i
Divide 21+7i by 98 to get \frac{3}{14}+\frac{1}{14}i.
Re(\frac{\left(1+2i\right)\left(7-7i\right)}{\left(7+7i\right)\left(7-7i\right)})
Multiply both numerator and denominator of \frac{1+2i}{7+7i} by the complex conjugate of the denominator, 7-7i.
Re(\frac{\left(1+2i\right)\left(7-7i\right)}{7^{2}-7^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1+2i\right)\left(7-7i\right)}{98})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1\times 7+1\times \left(-7i\right)+2i\times 7+2\left(-7\right)i^{2}}{98})
Multiply complex numbers 1+2i and 7-7i like you multiply binomials.
Re(\frac{1\times 7+1\times \left(-7i\right)+2i\times 7+2\left(-7\right)\left(-1\right)}{98})
By definition, i^{2} is -1.
Re(\frac{7-7i+14i+14}{98})
Do the multiplications in 1\times 7+1\times \left(-7i\right)+2i\times 7+2\left(-7\right)\left(-1\right).
Re(\frac{7+14+\left(-7+14\right)i}{98})
Combine the real and imaginary parts in 7-7i+14i+14.
Re(\frac{21+7i}{98})
Do the additions in 7+14+\left(-7+14\right)i.
Re(\frac{3}{14}+\frac{1}{14}i)
Divide 21+7i by 98 to get \frac{3}{14}+\frac{1}{14}i.
\frac{3}{14}
The real part of \frac{3}{14}+\frac{1}{14}i is \frac{3}{14}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}