Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}+\frac{2-i}{5i}
Multiply both numerator and denominator of \frac{1+2i}{3-i} by the complex conjugate of the denominator, 3+i.
\frac{1+7i}{10}+\frac{2-i}{5i}
Do the multiplications in \frac{\left(1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
\frac{1}{10}+\frac{7}{10}i+\frac{2-i}{5i}
Divide 1+7i by 10 to get \frac{1}{10}+\frac{7}{10}i.
\frac{1}{10}+\frac{7}{10}i+\frac{1+2i}{-5}
Multiply both numerator and denominator of \frac{2-i}{5i} by imaginary unit i.
\frac{1}{10}+\frac{7}{10}i+\left(-\frac{1}{5}-\frac{2}{5}i\right)
Divide 1+2i by -5 to get -\frac{1}{5}-\frac{2}{5}i.
-\frac{1}{10}+\frac{3}{10}i
Add \frac{1}{10}+\frac{7}{10}i and -\frac{1}{5}-\frac{2}{5}i to get -\frac{1}{10}+\frac{3}{10}i.
Re(\frac{\left(1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}+\frac{2-i}{5i})
Multiply both numerator and denominator of \frac{1+2i}{3-i} by the complex conjugate of the denominator, 3+i.
Re(\frac{1+7i}{10}+\frac{2-i}{5i})
Do the multiplications in \frac{\left(1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
Re(\frac{1}{10}+\frac{7}{10}i+\frac{2-i}{5i})
Divide 1+7i by 10 to get \frac{1}{10}+\frac{7}{10}i.
Re(\frac{1}{10}+\frac{7}{10}i+\frac{1+2i}{-5})
Multiply both numerator and denominator of \frac{2-i}{5i} by imaginary unit i.
Re(\frac{1}{10}+\frac{7}{10}i+\left(-\frac{1}{5}-\frac{2}{5}i\right))
Divide 1+2i by -5 to get -\frac{1}{5}-\frac{2}{5}i.
Re(-\frac{1}{10}+\frac{3}{10}i)
Add \frac{1}{10}+\frac{7}{10}i and -\frac{1}{5}-\frac{2}{5}i to get -\frac{1}{10}+\frac{3}{10}i.
-\frac{1}{10}
The real part of -\frac{1}{10}+\frac{3}{10}i is -\frac{1}{10}.