Evaluate
-\frac{1}{10}+\frac{3}{10}i=-0.1+0.3i
Real Part
-\frac{1}{10} = -0.1
Share
Copied to clipboard
\frac{\left(1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}+\frac{2-i}{5i}
Multiply both numerator and denominator of \frac{1+2i}{3-i} by the complex conjugate of the denominator, 3+i.
\frac{1+7i}{10}+\frac{2-i}{5i}
Do the multiplications in \frac{\left(1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
\frac{1}{10}+\frac{7}{10}i+\frac{2-i}{5i}
Divide 1+7i by 10 to get \frac{1}{10}+\frac{7}{10}i.
\frac{1}{10}+\frac{7}{10}i+\frac{1+2i}{-5}
Multiply both numerator and denominator of \frac{2-i}{5i} by imaginary unit i.
\frac{1}{10}+\frac{7}{10}i+\left(-\frac{1}{5}-\frac{2}{5}i\right)
Divide 1+2i by -5 to get -\frac{1}{5}-\frac{2}{5}i.
-\frac{1}{10}+\frac{3}{10}i
Add \frac{1}{10}+\frac{7}{10}i and -\frac{1}{5}-\frac{2}{5}i to get -\frac{1}{10}+\frac{3}{10}i.
Re(\frac{\left(1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}+\frac{2-i}{5i})
Multiply both numerator and denominator of \frac{1+2i}{3-i} by the complex conjugate of the denominator, 3+i.
Re(\frac{1+7i}{10}+\frac{2-i}{5i})
Do the multiplications in \frac{\left(1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
Re(\frac{1}{10}+\frac{7}{10}i+\frac{2-i}{5i})
Divide 1+7i by 10 to get \frac{1}{10}+\frac{7}{10}i.
Re(\frac{1}{10}+\frac{7}{10}i+\frac{1+2i}{-5})
Multiply both numerator and denominator of \frac{2-i}{5i} by imaginary unit i.
Re(\frac{1}{10}+\frac{7}{10}i+\left(-\frac{1}{5}-\frac{2}{5}i\right))
Divide 1+2i by -5 to get -\frac{1}{5}-\frac{2}{5}i.
Re(-\frac{1}{10}+\frac{3}{10}i)
Add \frac{1}{10}+\frac{7}{10}i and -\frac{1}{5}-\frac{2}{5}i to get -\frac{1}{10}+\frac{3}{10}i.
-\frac{1}{10}
The real part of -\frac{1}{10}+\frac{3}{10}i is -\frac{1}{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}