Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3+i.
\frac{\left(1+2i\right)\left(3+i\right)}{3^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+2i\right)\left(3+i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 3+i+2i\times 3+2i^{2}}{10}
Multiply complex numbers 1+2i and 3+i like you multiply binomials.
\frac{1\times 3+i+2i\times 3+2\left(-1\right)}{10}
By definition, i^{2} is -1.
\frac{3+i+6i-2}{10}
Do the multiplications in 1\times 3+i+2i\times 3+2\left(-1\right).
\frac{3-2+\left(1+6\right)i}{10}
Combine the real and imaginary parts in 3+i+6i-2.
\frac{1+7i}{10}
Do the additions in 3-2+\left(1+6\right)i.
\frac{1}{10}+\frac{7}{10}i
Divide 1+7i by 10 to get \frac{1}{10}+\frac{7}{10}i.
Re(\frac{\left(1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)})
Multiply both numerator and denominator of \frac{1+2i}{3-i} by the complex conjugate of the denominator, 3+i.
Re(\frac{\left(1+2i\right)\left(3+i\right)}{3^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1+2i\right)\left(3+i\right)}{10})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1\times 3+i+2i\times 3+2i^{2}}{10})
Multiply complex numbers 1+2i and 3+i like you multiply binomials.
Re(\frac{1\times 3+i+2i\times 3+2\left(-1\right)}{10})
By definition, i^{2} is -1.
Re(\frac{3+i+6i-2}{10})
Do the multiplications in 1\times 3+i+2i\times 3+2\left(-1\right).
Re(\frac{3-2+\left(1+6\right)i}{10})
Combine the real and imaginary parts in 3+i+6i-2.
Re(\frac{1+7i}{10})
Do the additions in 3-2+\left(1+6\right)i.
Re(\frac{1}{10}+\frac{7}{10}i)
Divide 1+7i by 10 to get \frac{1}{10}+\frac{7}{10}i.
\frac{1}{10}
The real part of \frac{1}{10}+\frac{7}{10}i is \frac{1}{10}.