Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+2i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+2iz
Multiply both numerator and denominator of \frac{1+2i}{1+i} by the complex conjugate of the denominator, 1-i.
\frac{\left(1+2i\right)\left(1-i\right)}{1^{2}-i^{2}}+2iz
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+2i\right)\left(1-i\right)}{2}+2iz
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 1+1\left(-i\right)+2i\times 1+2\left(-1\right)i^{2}}{2}+2iz
Multiply complex numbers 1+2i and 1-i like you multiply binomials.
\frac{1\times 1+1\left(-i\right)+2i\times 1+2\left(-1\right)\left(-1\right)}{2}+2iz
By definition, i^{2} is -1.
\frac{1-i+2i+2}{2}+2iz
Do the multiplications in 1\times 1+1\left(-i\right)+2i\times 1+2\left(-1\right)\left(-1\right).
\frac{1+2+\left(-1+2\right)i}{2}+2iz
Combine the real and imaginary parts in 1-i+2i+2.
\frac{3+i}{2}+2iz
Do the additions in 1+2+\left(-1+2\right)i.
\frac{3}{2}+\frac{1}{2}i+2iz
Divide 3+i by 2 to get \frac{3}{2}+\frac{1}{2}i.
\frac{\left(1+2i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+2iz
Multiply both numerator and denominator of \frac{1+2i}{1+i} by the complex conjugate of the denominator, 1-i.
\frac{\left(1+2i\right)\left(1-i\right)}{1^{2}-i^{2}}+2iz
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+2i\right)\left(1-i\right)}{2}+2iz
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 1+1\left(-i\right)+2i\times 1+2\left(-1\right)i^{2}}{2}+2iz
Multiply complex numbers 1+2i and 1-i like you multiply binomials.
\frac{1\times 1+1\left(-i\right)+2i\times 1+2\left(-1\right)\left(-1\right)}{2}+2iz
By definition, i^{2} is -1.
\frac{1-i+2i+2}{2}+2iz
Do the multiplications in 1\times 1+1\left(-i\right)+2i\times 1+2\left(-1\right)\left(-1\right).
\frac{1+2+\left(-1+2\right)i}{2}+2iz
Combine the real and imaginary parts in 1-i+2i+2.
\frac{3+i}{2}+2iz
Do the additions in 1+2+\left(-1+2\right)i.
\frac{3}{2}+\frac{1}{2}i+2iz
Divide 3+i by 2 to get \frac{3}{2}+\frac{1}{2}i.