Evaluate
\frac{6rt-4r+9t}{12rt}
Expand
\frac{6rt-4r+9t}{12rt}
Share
Copied to clipboard
\frac{3}{4r}-\frac{2-3t}{6t}
Add 1 and 2 to get 3.
\frac{3\times 3t}{12rt}-\frac{\left(2-3t\right)\times 2r}{12rt}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4r and 6t is 12rt. Multiply \frac{3}{4r} times \frac{3t}{3t}. Multiply \frac{2-3t}{6t} times \frac{2r}{2r}.
\frac{3\times 3t-\left(2-3t\right)\times 2r}{12rt}
Since \frac{3\times 3t}{12rt} and \frac{\left(2-3t\right)\times 2r}{12rt} have the same denominator, subtract them by subtracting their numerators.
\frac{9t-4r+6tr}{12rt}
Do the multiplications in 3\times 3t-\left(2-3t\right)\times 2r.
\frac{3}{4r}-\frac{2-3t}{6t}
Add 1 and 2 to get 3.
\frac{3\times 3t}{12rt}-\frac{\left(2-3t\right)\times 2r}{12rt}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4r and 6t is 12rt. Multiply \frac{3}{4r} times \frac{3t}{3t}. Multiply \frac{2-3t}{6t} times \frac{2r}{2r}.
\frac{3\times 3t-\left(2-3t\right)\times 2r}{12rt}
Since \frac{3\times 3t}{12rt} and \frac{\left(2-3t\right)\times 2r}{12rt} have the same denominator, subtract them by subtracting their numerators.
\frac{9t-4r+6tr}{12rt}
Do the multiplications in 3\times 3t-\left(2-3t\right)\times 2r.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}