Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+\sqrt{5}\right)\left(3-\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}
Rationalize the denominator of \frac{1+\sqrt{5}}{3+\sqrt{5}} by multiplying numerator and denominator by 3-\sqrt{5}.
\frac{\left(1+\sqrt{5}\right)\left(3-\sqrt{5}\right)}{3^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+\sqrt{5}\right)\left(3-\sqrt{5}\right)}{9-5}
Square 3. Square \sqrt{5}.
\frac{\left(1+\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}
Subtract 5 from 9 to get 4.
\frac{3-\sqrt{5}+3\sqrt{5}-\left(\sqrt{5}\right)^{2}}{4}
Apply the distributive property by multiplying each term of 1+\sqrt{5} by each term of 3-\sqrt{5}.
\frac{3+2\sqrt{5}-\left(\sqrt{5}\right)^{2}}{4}
Combine -\sqrt{5} and 3\sqrt{5} to get 2\sqrt{5}.
\frac{3+2\sqrt{5}-5}{4}
The square of \sqrt{5} is 5.
\frac{-2+2\sqrt{5}}{4}
Subtract 5 from 3 to get -2.